Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(18): 7240-7253, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37099683

RESUMO

Ammonia monooxygenase and analogous oxygenase enzymes contribute to pharmaceutical biotransformation in activated sludge. In this study, we hypothesized that methane monooxygenase can enhance pharmaceutical biotransformation within the benthic, diffuse periphytic sediments (i.e., "biomat") of a shallow, open-water constructed wetland. To test this hypothesis, we combined field-scale metatranscriptomics, porewater geochemistry, and methane gas fluxes to inform microcosms targeting methane monooxygenase activity and its potential role in pharmaceutical biotransformation. In the field, sulfamethoxazole concentrations decreased within surficial biomat layers where genes encoding for the particulate methane monooxygenase (pMMO) were transcribed by a novel methanotroph classified as Methylotetracoccus. Inhibition microcosms provided independent confirmation that methane oxidation was mediated by the pMMO. In these same incubations, sulfamethoxazole biotransformation was stimulated proportional to aerobic methane-oxidizing activity and exhibited negligible removal in the absence of methane, in the presence of methane and pMMO inhibitors, and under anoxia. Nitrate reduction was similarly enhanced under aerobic methane-oxidizing conditions with rates several times faster than for canonical denitrification. Collectively, our results provide convergent in situ and laboratory evidence that methane-oxidizing activity can enhance sulfamethoxazole biotransformation, with possible implications for the combined removal of nitrogen and trace organic contaminants in wetland sediments.


Assuntos
Metano , Áreas Alagadas , Oxirredução , Minerais , Biotransformação
2.
Water Res ; 252: 121200, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309061

RESUMO

The metalloids boron and arsenic are ubiquitous and difficult to remove during water treatment. As chemical pretreatment using strong base and oxidants can increase their rejection during membrane-based nanofiltration (NF), we examined a nature-based pretreatment approach using benthic photosynthetic processes inherent in a unique type of constructed wetland to assess whether analogous gains can be achieved without the need for exogenous chemical dosing. During peak photosynthesis, the pH of the overlying clear water column above a photosynthetic microbial mat (biomat) that naturally colonizes shallow, open water constructed wetlands climbs from circumneutral to approximately 10. This biological increase in pH was reproduced in a laboratory bioreactor and resulted in analogous increases in NF rejection of boron and arsenic that is comparable to chemical dosing. Rejection across the studied pH range was captured using a monoprotic speciation model. In addition to this mechanism, the biomat accelerated the oxidation of introduced arsenite through a combination of abiotic and biotic reactions. This resulted in increases in introduced arsenite rejection that eclipsed those achieved solely by pH. Capital, operation, and maintenance costs were used to benchmark the integration of this constructed wetland against chemical dosing for water pretreatment, manifesting long-term (sub-decadal) economic benefits for the wetland-based strategy in addition to social and environmental benefits. These results suggest that the integration of nature-based pretreatment approaches can increase the sustainability of membrane-based and potentially other engineered treatment approaches for challenging water contaminants.


Assuntos
Arsênio , Arsenitos , Poluentes Químicos da Água , Arsênio/análise , Boro , Áreas Alagadas , Fotossíntese , Poluentes Químicos da Água/análise
3.
Front Microbiol ; 14: 1172798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206339

RESUMO

Steep Cone Geyser is a unique geothermal feature in Yellowstone National Park (YNP), Wyoming, actively gushing silicon-rich fluids along outflow channels possessing living and actively silicifying microbial biomats. To assess the geomicrobial dynamics occurring temporally and spatially at Steep Cone, samples were collected at discrete locations along one of Steep Cone's outflow channels for both microbial community composition and aqueous geochemistry analysis during field campaigns in 2010, 2018, 2019, and 2020. Geochemical analysis characterized Steep Cone as an oligotrophic, surface boiling, silicious, alkaline-chloride thermal feature with consistent dissolved inorganic carbon and total sulfur concentrations down the outflow channel ranging from 4.59 ± 0.11 to 4.26 ± 0.07 mM and 189.7 ± 7.2 to 204.7 ± 3.55 µM, respectively. Furthermore, geochemistry remained relatively stable temporally with consistently detectable analytes displaying a relative standard deviation <32%. A thermal gradient decrease of ~55°C was observed from the sampled hydrothermal source to the end of the sampled outflow transect (90.34°C ± 3.38 to 35.06°C ± 7.24). The thermal gradient led to temperature-driven divergence and stratification of the microbial community along the outflow channel. The hyperthermophile Thermocrinis dominates the hydrothermal source biofilm community, and the thermophiles Meiothermus and Leptococcus dominate along the outflow before finally giving way to more diverse and even microbial communities at the end of the transect. Beyond the hydrothermal source, phototrophic taxa such as Leptococcus, Chloroflexus, and Chloracidobacterium act as primary producers for the system, supporting heterotrophic growth of taxa such as Raineya, Tepidimonas, and Meiothermus. Community dynamics illustrate large changes yearly driven by abundance shifts of the dominant taxa in the system. Results indicate Steep Cone possesses dynamic outflow microbial communities despite stable geochemistry. These findings improve our understanding of thermal geomicrobiological dynamics and inform how we can interpret the silicified rock record.

4.
Sci Total Environ ; 876: 162478, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36871713

RESUMO

Nature-based solutions offer a sustainable alternative to labor and chemical intensive engineered treatment of metal-impaired waste streams. Shallow, unit process open water (UPOW) constructed wetlands represent a novel design where benthic photosynthetic microbial mats (biomat) coexist with sedimentary organic matter and inorganic (mineral) phases, creating an environment for multiple-phase interactions with soluble metals. To query the interplay of dissolved metals with inorganic and organic fractions, biomat was harvested from two distinct systems: the demonstration-scale UPOW within the Prado constructed wetlands complex ("Prado biomat", 88 % inorganic) and a smaller pilot-scale system ("Mines Park (MP) biomat", 48 % inorganic). Both biomats accumulated detectable background concentrations of metals of toxicological concern (Zn, Cu, Pb, and Ni) by assimilation from waters that did not exceed regulatory thresholds for these metals. Augmentation in laboratory microcosms with a mixture of these metals at ecotoxicologically relevant concentrations revealed a further capacity for metal removal (83-100 %). Experimental concentrations encapsulated the upper range of surface waters in the metal-impaired Tambo watershed in Peru, where a passive treatment technology such as this could be applied. Sequential extractions demonstrated that metal removal by mineral fractions is more important in Prado than MP biomat, possibly due to a higher proportion and mass of iron and other minerals from Prado-derived materials. Geochemical modeling using PHREEQC suggests that in addition to sorption/surface complexation of metals to mineral phases (modeled as iron (oxyhydr)oxides), diatom and bacterial functional groups (carboxyl, phosphoryl, and silanol) also play an important role in soluble metal removal. By comparing sequestered metal phases across these biomats with differing inorganic content, we propose that sorption/surface complexation and incorporation/assimilation of both inorganic and organic constituents of the biomat play a dominant role in metal removal potential by UPOW wetlands. This knowledge could be applied to passively treat metal impaired waters in analogous and remote regions.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Áreas Alagadas , Água , Minerais , Ferro , Poluentes Químicos da Água/análise
5.
Water Res X ; 15: 100144, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35542761

RESUMO

Changes in climate, season, and vegetation can alter organic export from watersheds. While an accepted tradeoff to protect public health, disinfection processes during drinking water treatment can adversely react with organic compounds to form disinfection byproducts (DBPs). By extension, DBP monitoring can yield insights into hydrobiogeochemical dynamics within watersheds and their implications for water resource management. In this study, we analyzed temporal trends from a water treatment facility that sources water from Coal Creek in Crested Butte, Colorado. These trends revealed a long-term increase in haloacetic acid and trihalomethane formation over the period of 2005-2020. Disproportionate export of dissolved organic carbon and formation of DBPs that exceeded maximum contaminant levels were consistently recorded in association with late spring freshet. Synoptic sampling of the creek in 2020 and 2021 identified a biogeochemical hotspot for organic carbon export in the upper domain of the watershed that contained a prominent fulvic acid-like fluorescent signature. DBP formation potential analyses from this domain yielded similar ratios of regulated DBP classes to those formed at the drinking water facility. Spectrometric qualitative analyses of pre and post-reacted waters with hypochlorite indicated lignin-like and condensed hydrocarbon-like molecules were the major reactive chemical classes during chlorine-based disinfection. This study demonstrates how drinking water quality archives combined with synoptic sampling and targeted analyses can be used to identify and understand export control points for dissolved organic matter. This approach could be applied to identify and characterize analogous watersheds where seasonal or climate-associated organic matter export challenge water treatment disinfection and by extension inform watershed management and drinking water treatment.

6.
Sci Total Environ ; 699: 134202, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33736197

RESUMO

Oil and gas (O&G) production in the United States is expected to grow at a substantial rate over the coming decades. Environmental sustainability related to water consumption during O&G extraction can be addressed through treatment and reuse of water returning to the surface after well completion. Water quality is an important factor in reuse applications, and specific treatment technologies must be utilized to remove different contaminants. Among others, biological active filtration can remove dissolved organic matter as a pre-treatment for surface discharge or to facilitate reuse in such applications as hydraulic fracturing, dust suppression, road stabilization, and crop irrigation. Yet, the formation of byproducts during treatment of O&G wastewater remains a concern when evaluating reuse applications. In this study, we investigated the previously unnoticed biotic formation of iodinated organic compounds (IOCs) such as triiodomethane during biological treatment of O&G wastewater for beneficial reuse. Iodide and several IOCs were quantified in O&G produced water before and after treatment in biological active filters filled with different media types over 13 weeks of operation. While iodide and total IOCs were measured at concentrations <53 mg/L and 147 µg/L, respectively, before biological treatment, total IOCs were measured at concentrations close to 4 mg/L after biological treatment. Triiodomethane was the IOC that was predominantly present. IOC formation had a negative strong correlation (r = -0.7 to -0.8, p < 0.05, n = 9) with iodide concentration in the treated O&G wastewater, indicating that iodide introduced to the biological active filter system was utilized in various reactions, including biologically mediated halogenation of organic matter. Additionally, iodide-oxidizing bacteria augmented in the treated produced water pointed towards potential negative environmental implications when releasing biologically treated halide-rich wastewater effluents to the aquatic environment.


Assuntos
Fraturamento Hidráulico , Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
7.
Plant Physiol ; 132(2): 883-92, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12805618

RESUMO

l-Fucose (l-Fuc) is a monosaccharide constituent of plant cell wall polysaccharides and glycoproteins. The committing step in the de novo synthesis of l-Fuc is catalyzed by GDP-d-mannose 4,6-dehydratase, which, in Arabidopsis, is encoded by the GMD1 and GMD2 (MUR1) genes. To determine the functional significance of this genetic redundancy, the expression patterns of both genes were investigated via promoter-beta-glucuronidase fusions and immunolocalization of a Fuc-containing epitope. GMD2 is expressed in most cell types of the root, with the notable exception of the root tip where strong expression of GMD1 is observed. Within shoot organs, GMD1::GUS expression is confined to stipules and pollen grains leading to fucosylation of the walls of these cell types in the mur1 mutant. These results suggest that GMD2 represents the major housekeeping gene for the de novo synthesis of GDP-l-Fuc, whereas GMD1 expression is limited to a number of specialized cell types. We conclude that the synthesis of GDP-l-Fuc is controlled in a cell-autonomous manner by differential expression of two isoforms of the same enzyme.


Assuntos
Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Hidroliases/genética , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Sequência de Bases , Clonagem Molecular , Primers do DNA , Escherichia coli/enzimologia , Escherichia coli/genética , Flores/enzimologia , Regulação Enzimológica da Expressão Gênica , Glucuronidase/genética , Hidroliases/química , Isoenzimas/química , Isoenzimas/genética , Dados de Sequência Molecular , Folhas de Planta/enzimologia , Raízes de Plantas/enzimologia , Caules de Planta/enzimologia , Plantas Geneticamente Modificadas/enzimologia , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
8.
Proc Natl Acad Sci U S A ; 99(5): 3340-5, 2002 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-11854459

RESUMO

Cell walls of the Arabidopsis mutant mur2 contain less than 2% of the wild-type amount of fucosylated xyloglucan because of a point mutation in the fucosyltransferase AtFUT1. The mur2 mutation eliminates xyloglucan fucosylation in all major plant organs, indicating that Arabidopsis thaliana fucosyltransferase 1 (AtFUT1) accounts for all of the xyloglucan fucosyltransferase activity in Arabidopsis. Despite this alteration in structure, mur2 plants show a normal growth habit and wall strength. In contrast, Arabidopsis mur1 mutants that are defective in the de novo synthesis of l-fucose exhibit a dwarfed growth habit and decreased wall strength [Reiter, W. D., Chapple, C. & Somerville, C. R. (1993) Science 261, 1032-1035]. Because the mur1 mutation affects several cell wall polysaccharides, whereas the mur2 mutation is specific to xyloglucan, the phenotypes of mur1 plants appear to be caused by structural changes in fucosylated pectic components such as rhamnogalacturonan-II. The normal growth habit and wall strength of mur2 plants casts doubt on hypotheses regarding roles of xyloglucan fucosylation in facilitating xyloglucan-cellulose interactions or in modulating growth regulator activity.


Assuntos
Fucosiltransferases/metabolismo , Glucanos , Polissacarídeos/metabolismo , Xilanos , Arabidopsis/enzimologia , Arabidopsis/genética , Linhagem Celular Transformada , Parede Celular , Clonagem Molecular , Fucose/metabolismo , Fucosiltransferases/genética , Humanos , Mutagênese
9.
Plant Cell ; 15(7): 1662-70, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12837954

RESUMO

Xyloglucans are the principal glycans that interlace cellulose microfibrils in most flowering plants. The mur3 mutant of Arabidopsis contains a severely altered structure of this polysaccharide because of the absence of a conserved alpha-L-fucosyl-(1-->2)-beta-D-galactosyl side chain and excessive galactosylation at an alternative xylose residue. Despite this severe structural alteration, mur3 plants were phenotypically normal and exhibited tensile strength in their inflorescence stems comparable to that of wild-type plants. The MUR3 gene was cloned positionally and shown to encode a xyloglucan galactosyltransferase that acts specifically on the third xylose residue within the XXXG core structure of xyloglucan. MUR3 belongs to a large family of type-II membrane proteins that is evolutionarily conserved among higher plants. The enzyme shows sequence similarities to the glucuronosyltransferase domain of exostosins, a class of animal glycosyltransferases that catalyze the synthesis of heparan sulfate, a glycosaminoglycan with numerous roles in cell differentiation and development. This finding suggests that components of the plant cell wall and of the animal extracellular matrix are synthesized by evolutionarily related enzymes even though the structures of the corresponding polysaccharides are entirely different from each other.


Assuntos
Arabidopsis/genética , Galactosiltransferases/genética , Glucanos/metabolismo , Xilanos/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Extensões da Superfície Celular/ultraestrutura , Parede Celular/enzimologia , Parede Celular/genética , Clonagem Molecular , Evolução Molecular , Galactosiltransferases/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Mutação , Fenótipo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa