Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Ultrasound Med ; 42(10): 2349-2356, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37255051

RESUMO

OBJECTIVE: Scanning protocols for lung ultrasound often include 8 or more lung zones, which may limit real-world clinical use. We sought to compare a 2-zone, anterior-superior thoracic ultrasound protocol for B-line artifact detection with an 8-zone approach in patients with known or suspected heart failure using a deep learning (DL) algorithm. METHODS: Adult patients with suspected heart failure and B-lines on initial lung ultrasound were enrolled in a prospective observational study. Subjects received daily ultrasounds with a hand-held ultrasound system using an 8-zone protocol (right and left anterior/lateral and superior/inferior). A previously published deep learning algorithm that rates severity of B-lines on a 0-4 scale was adapted for use on hand-held ultrasound full video loops. Average severities for 8 and 2 zones were calculated utilizing DL ratings. Bland-Altman plot analyses were used to assess agreement and identify bias between 2- and 8-zone scores for both primary (all patients, 5728 videos, 205 subjects) and subgroup (confirmed diagnosis of heart failure or pulmonary edema, 4464 videos, 147 subjects) analyses. RESULTS: Bland-Altman plot analyses revealed excellent agreement for both primary and subgroup analyses. The absolute difference on the 4-point scale between 8- and 2-zone average scores was not significant for the primary dataset (0.03; 95% CI -0.01 to 0.07) or the subgroup (0.01; 95% CI -0.04 to 0.06). CONCLUSION: Utilization of a 2-zone, anterior-superior thoracic ultrasound protocol provided similar severity information to an 8-zone approach for a dataset of subjects with known or suspected heart failure.


Assuntos
Aprendizado Profundo , Insuficiência Cardíaca , Edema Pulmonar , Adulto , Humanos , Pulmão/diagnóstico por imagem , Insuficiência Cardíaca/diagnóstico por imagem , Ultrassonografia/métodos
2.
Ultrasound J ; 16(1): 42, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283362

RESUMO

BACKGROUND: Ultrasound can detect fluid in the alveolar and interstitial spaces of the lung using the presence of artifacts known as B-lines. The aim of this study was to determine whether a deep learning algorithm generated B-line severity score correlated with pulmonary congestion and disease severity based on clinical assessment (as identified by composite congestion score and Rothman index) and to evaluate changes in the score with treatment. Patients suspected of congestive heart failure underwent daily ultrasonography. Eight lung zones (right and left anterior/lateral and superior/inferior) were scanned using a tablet ultrasound system with a phased-array probe. Mixed effects modeling explored the association between average B-line score and the composite congestion score, and average B-line score and Rothman index, respectively. Covariates tested included patient and exam level data (sex, age, presence of selected comorbidities, baseline sodium and hemoglobin, creatinine, vital signs, oxygen delivery amount and delivery method, diuretic dose). RESULTS: Analysis included 110 unique subjects (3379 clips). B-line severity score was significantly associated with the composite congestion score, with a coefficient of 0.7 (95% CI 0.1-1.2 p = 0.02), but was not significantly associated with the Rothman index. CONCLUSIONS: Use of this technology may allow clinicians with limited ultrasound experience to determine an objective measure of B-line burden.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa