Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(11): 5704-5780, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38666439

RESUMO

Anion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels-Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure-property-performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.

2.
Nat Mater ; 21(5): 555-563, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35301475

RESUMO

Semipermeable polymeric anion exchange membranes are essential for separation, filtration and energy conversion technologies including reverse electrodialysis systems that produce energy from salinity gradients, fuel cells to generate electrical power from the electrochemical reaction between hydrogen and oxygen, and water electrolyser systems that provide H2 fuel. Anion exchange membrane fuel cells and anion exchange membrane water electrolysers rely on the membrane to transport OH- ions between the cathode and anode in a process that involves cooperative interactions with H2O molecules and polymer dynamics. Understanding and controlling the interactions between the relaxation and diffusional processes pose a main scientific and critical membrane design challenge. Here quasi-elastic neutron scattering is applied over a wide range of timescales (100-103 ps) to disentangle the water, polymer relaxation and OH- diffusional dynamics in commercially available anion exchange membranes (Fumatech FAD-55) designed for selective anion transport across different technology platforms, using the concept of serial decoupling of relaxation and diffusional processes to analyse the data. Preliminary data are also reported for a laboratory-prepared anion exchange membrane especially designed for fuel cell applications.


Assuntos
Polímeros , Água , Ânions , Troca Iônica , Íons , Membranas Artificiais , Polímeros/química , Água/química
3.
Angew Chem Int Ed Engl ; 58(4): 1046-1051, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30414220

RESUMO

Efficient and durable nonprecious metal electrocatalysts for the oxygen reduction (ORR) are highly desirable for several electrochemical devices, including anion exchange membrane fuel cells (AEMFCs). Here, a 2D planar electrocatalyst with CoOx embedded in nitrogen-doped graphitic carbon (N-C-CoOx ) was created through the direct pyrolysis of a metal-organic complex with a NaCl template. The N-C-CoOx catalyst showed high ORR activity, indicated by excellent half-wave (0.84 V vs. RHE) and onset (1.01 V vs. RHE) potentials. This high intrinsic activity was also observed in operating AEMFCs where the kinetic current was 100 mA cm-2 at 0.85 V. When paired with a radiation-grafted ETFE powder ionomer, the N-C-CoOx AEMFC cathode was able to achieve extremely high peak power density (1.05 W cm-2 ) and mass transport limited current (3 A cm-2 ) for a precious metal free electrode. The N-C-CoOx cathode also showed good stability over 100 hours of operation with a voltage decay of only 15 % at 600 mA cm-2 under H2 /air (CO2 -free) reacting gas feeds. The N-C-CoOx cathode catalyst was also paired with a very low loading PtRu/C anode catalyst, to create AEMFCs with a total PGM loading of only 0.10 mgPt-Ru cm-2 capable of achieving 7.4 W mg-1 PGM as well as supporting a current of 0.7 A cm-2 at 0.6 V with H2 /air (CO2 free)-creating a cell that was able to meet the 2019 U.S. Department of Energy initial performance target of 0.6 V at 0.6 A cm-2 under H2 /air with a PGM loading <0.125 mg cm-2 with AEMFCs for the first time.

4.
Phys Chem Chem Phys ; 17(18): 12135-45, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25877304

RESUMO

This study investigates the effect of 1 mmol dm(-3) concentrations of a selection of small cationic molecules on the performance of a fuel cell grade oxygen reduction reaction (ORR) catalyst (Johnson Matthey HiSPEC 3000, 20 mass% Pt/C) in aqueous KOH (1 mol dm(-3)). The cationic molecules studied include quaternary ammonium (including those based on bicyclic systems) and imidazolium types as well as a phosphonium example: these serve as fully solubilised models for the commonly encountered head-groups in alkaline anion-exchange membranes (AAEM) and anion-exchange ionomers (AEI) that are being developed for application in alkaline polymer electrolyte fuel cells (APEFCs), batteries and electrolysers. Both cyclic and hydrodynamic linear sweep rotating disk electrode voltammetry techniques were used. The resulting voltammograms and subsequently derived data (e.g. apparent electrochemical active surface areas, Tafel plots, and number of [reduction] electrons transferred per O2) were compared. The results show that the imidazolium examples produced the highest level of interference towards the ORR on the Pt/C catalyst under the experimental conditions used.

5.
Phys Chem Chem Phys ; 17(6): 4367-78, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25578464

RESUMO

We demonstrate that the true hydroxide conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) [ETFE] anion exchange membrane (AEM) is as high as 132 mS cm(-1) at 80 °C and 95% RH, comparable to a proton exchange membrane, but with very much less water present in the film. To understand this behaviour we studied ion transport of hydroxide, carbonate, bicarbonate and chloride, as well as water uptake and distribution. Water uptake of the AEM in water vapor is an order of magnitude lower than when submerged in liquid water. In addition (19)F pulse field gradient spin echo NMR indicates that there is little tortuosity in the ionic pathways through the film. A complete analysis of the IR spectrum of the AEM and the analyses of water absorption using FT-IR led to conclusion that the fluorinated backbone chains do not interact with water and that two types of water domains exist within the membrane. The reduction in conductivity was measured during exposure of the OH(-) form of the AEM to air at 95% RH and was seen to be much slower than the reaction of CO2 with OH(-) as the amount of water in the film determines its ionic conductivity and at relative wet RHs its re-organization is slow.

6.
Phys Chem Chem Phys ; 15(43): 18992-9000, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24100347

RESUMO

Alkaline anion-exchange membranes (AAEMs) containing cationic head-groups (e.g. involving quaternary ammonium and imidazolium groups) are of interest with regard to application in alkaline polymer electrolyte fuel cells (APEFCs). This initial ex situ study evaluated the effect of 1 mmol dm(-3) concentrations of model molecules containing (AAEM-relevant) cationic groups on the oxygen reduction reaction on a polycrystalline platinum disk (Ptpc) electrode in aqueous KOH (1 mol dm(-3)). The cationic molecules studied were tetramethylammonium (TMA), benzyltrimethylammonium (BTMA), 1-benzyl-3-methylimidazolium (BMI), 1-benzyl-4-aza-1-azoniabicyclo[2.2.2]octane (BAABCO) and 6-(benzyloxy)-N,N,N-trimethylhexan-1-aminium (BOTMHA). Both cyclic and hydrodynamic linear sweep rotating disk electrode voltammetry techniques were used. The resulting voltammograms, derived estimates of apparent electrochemically active surface areas, Tafel slopes, apparent exchange-current densities and the number of electrons transferred (per O2 molecule) were compared. The results strongly suggest that 1 mmol dm(-3) concentrations of BTMA, BAABCO, and (especially) BMI seriously inhibit the catalytic activities of Ptpc in an aqueous KOH electrolyte at 25 °C. The negative influence of (benzene-ring-free) TMA and Cl(-) anions (KCl control experiment) appeared to be less severe. The separation of the trimethylammonium group from the benzene ring via a hexyloxy spacer chain (in BOTMHA) also produced a milder negative effect.

7.
ACS Sustain Chem Eng ; 11(4): 1508-1517, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36743393

RESUMO

The performance of zero-gap CO2 electrolysis (CO2E) is significantly influenced by the membrane's chemical structure and physical properties due to its effects on the local reaction environment and water/ion transport. Radiation-grafted anion-exchange membranes (RG-AEM) have demonstrated high ionic conductivity and durability, making them a promising alternative for CO2E. These membranes were fabricated using two different thicknesses of ethylene-tetrafluoroethylene polymer substrates (25 and 50 µm) and three different headgroup chemistries: benzyl-trimethylammonium, benzyl-N-methylpyrrolidinium, and benzyl-N-methylpiperidinium (MPIP). Our membrane characterization and testing in zero-gap cells over Ag electrocatalysts under commercially relevant conditions showed correlations between the water uptake, ionic conductivity, hydration, and cationic-head groups with the CO2E efficiency. The thinner 25 µm-based AEM with the MPIP-headgroup (ion-exchange capacities of 2.1 ± 0.1 mmol g-1) provided balanced in situ test characteristics with lower cell potentials, high CO selectivity, reduced liquid product crossover, and enhanced water management while maintaining stable operation compared to the commercial AEMs. The CO2 electrolyzer with an MPIP-AEM operated for over 200 h at 150 mA cm-2 with CO selectivities up to 80% and low cell potentials (around 3.1 V) while also demonstrating high conductivities and chemical stability during performance at elevated temperatures (above 60 °C).

8.
ACS Appl Energy Mater ; 6(2): 1085-1092, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36937111

RESUMO

Recently, the development of durable anion-exchange membrane fuel cells (AEMFCs) has increased in intensity due to their potential to use low-cost, sustainable components. However, the decomposition of the quaternary ammonium (QA) cationic groups in the anion-exchange membranes (AEMs) during cell operation is still a major challenge. Many different QA types and functionalized polymers have been proposed that achieve high AEM stabilities in strongly alkaline aqueous solutions. We previously developed an ex situ technique to measure AEM alkaline stabilities in an environment that simulates the low-hydration conditions in an operating AEMFC. However, this method required the AEMs to be soluble in DMSO solvent, so decomposition could be monitored using 1H nuclear magnetic resonance (NMR). We now report the extension of this ex situ protocol to spectroscopically measure the alkaline stability of insoluble AEMs. The stability ofradiation-grafted (RG) poly(ethylene-co-tetrafluoroethylene)-(ETFE)-based poly(vinylbenzyltrimethylammonium) (ETFE-TMA) and poly(vinylbenzyltriethylammonium) (ETFE-TEA) AEMs were studied using Raman spectroscopy alongside changes in their true OH- conductivities and ion-exchange capacities (IEC). A crosslinked polymer made from poly(styrene-co-vinylbenzyl chloride) random copolymer and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA) was also studied. The results are consistent with our previous studies based on QA-type model small molecules and soluble poly(2,6-dimethylphenylene oxide) (PPO) polymers. Our work presents a reliable ex situ technique to measure the true alkaline stability of AEMs for fuel cells and water electrolyzers.

9.
Phys Chem Chem Phys ; 14(27): 9582-5, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22678544

RESUMO

A glucose oxidase (GOd) bioelectrode exhibiting high performance, direct electron transfer (DET) has been prepared. Unprecedented redox peak current densities of 1 mA cm(-2) were observed alongside a clear electrochemical response to glucose. This system shows potential as a low cost, high performance enzymatic bioelectrode.


Assuntos
Glucose Oxidase/metabolismo , Celulose/química , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose/análise , Glucose Oxidase/química , Nanotubos de Carbono
10.
Appl Microbiol Biotechnol ; 93(1): 423-37, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21984392

RESUMO

The performance and dynamics of the bacterial communities in the biofilm and suspended culture in the anode chamber of sucrose-fed microbial fuel cells (MFCs) were studied by using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes followed by species identification by sequencing. The power density of MFCs was correlated to the relative proportions of species obtained from DGGE analysis in order to detect bacterial species or taxonomic classes with important functional role in electricity production. Although replicate MFCs showed similarity in performance, cluster analysis of DGGE profiles revealed differences in the evolution of bacterial communities between replicate MFCs. No correlation was found between the proportion trends of specific species and the enhancement of power output. However, in all MFCs, putative exoelectrogenic denitrifiers and sulphate-reducers accounted for approximately 24% of the bacterial biofilm community at the end of the study. Pareto-Lorenz evenness distribution curves extracted from the DGGE patterns obtained from time course samples indicated community structures where shifts between functionally similar species occur, as observed within the predominant fermentative bacteria. These results suggest the presence of functional redundancy within the anodic communities, a probable indication that stable MFC performance can be maintained in changing environmental conditions. The capability of bacteria to adapt to electricity generation might be present among a wide range of bacteria.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Biota , Sacarose/metabolismo , Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Eletricidade , Eletrodos/microbiologia , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
ACS Mater Au ; 2(3): 367-373, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36855387

RESUMO

Anion-exchange membrane (AEM) fuel cells (AEMFCs) and water electrolyzers (AEMWEs) have gained strong attention of the scientific community as an alternative to expensive mainstream fuel cell and electrolysis technologies. However, in the high pH environment of the AEMFCs and AEMWEs, especially at low hydration levels, the molecular structure of most anion-conducting polymers breaks down because of the strong reactivity of the hydroxide anions with the quaternary ammonium (QA) cation functional groups that are commonly used in the AEMs and ionomers. Therefore, new highly stable QAs are needed to withstand the strong alkaline environment of these electrochemical devices. In this study, a series of isoindolinium salts with different substituents is prepared and investigated for their stability under dry alkaline conditions. We show that by modifying isoindolinium salts, steric effects could be added to change the degradation kinetics and impart significant improvement in the alkaline stability, reaching an order of magnitude improvement when all the aromatic positions are substituted. Density functional theory (DFT) calculations are provided in support of the high kinetic stability found in these substituted isoindolinium salts. This is the first time that this class of QAs has been investigated. We believe that these novel isoindolinium groups can be a good alternative in the chemical design of AEMs to overcome material stability challenges in advanced electrochemical systems.

12.
Appl Microbiol Biotechnol ; 90(3): 1179-91, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21400098

RESUMO

The spatiotemporal development of a bacterial community in an exoelectrogenic biofilm was investigated in sucrose-fed longitudinal tubular microbial fuel cell reactors, consisting of two serially connected modules. The proportional changes in the microbial community composition were assessed by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) and DNA sequencing in order to relate them to the performance and stability of the bioelectrochemical system. The reproducibility of duplicated reactors, evaluated by cluster analysis and Jaccard's coefficient, shows 80-90% similarity in species composition. Biofilm development through fed-batch start-up and subsequent stable continuous operation results in a population shift from γ-Proteobacteria- and Bacteroidetes- to Firmicutes-dominated communities, with other diverse species present at much lower relative proportions. DGGE patterns were analysed by range-weighted richness (Rr) and Pareto-Lorenz evenness distribution curves to investigate the evolution of the bacterial community. The first modules shifted from dominance by species closely related to Bacteroides graminisolvens, Raoultella ornithinolytica and Klebsiella sp. BM21 at the start of continuous-mode operation to a community dominated by Paludibacter propionicigenes-, Lactococcus sp.-, Pantoea agglomerans- and Klebsiella oxytoca-related species with stable power generation (6.0 W/m(3)) at day 97. Operational strategies that consider the dynamics of the population will provide useful parameters for evaluating system performance in the practical application of microbial fuel cells.


Assuntos
Bactérias/isolamento & purificação , Fontes de Energia Bioelétrica/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biofilmes , DNA Bacteriano/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Sacarose/metabolismo
13.
Adv Sci (Weinh) ; 8(22): e2102637, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34636177

RESUMO

Polymer electrolyte membrane fuel cells can generate high power using a potentially green fuel (H2 ) and zero emissions of greenhouse gas (CO2 ). However, significant mass transport resistances in the interface region of the membrane electrode assemblies (MEAs), between the membrane and the catalyst layers remains a barrier to achieving MEAs with high power densities and long-term stabilities. Here, a 3D-interfacial zipping concept is presented to overcome this challenge. Vinylbenzyl-terminated bi-cationic quaternary-ammonium-based polyelectrolyte is employed as both the anionomer in the anion-exchange membrane (AEM) and catalyst layers. A quaternary-ammonium-containing covalently locked interface is formed by thermally induced inter-crosslinking of the terminal vinyl groups. Ex situ evaluation of interfacial bonding strength and in situ durability tests demonstrate that this 3D-zipped interface strategy prevents interfacial delamination without any sacrifice of fuel cell performance. A H2 /O2 AEMFC test demonstration shows promisingly high power densities (1.5 W cm-2 at 70 °C with 100% RH and 0.2 MPa backpressure gas feeds), which can retain performances for at least 120 h at a usefully high current density of 0.6 A cm-2 .

14.
ACS Mater Lett ; 2(2): 168-173, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32905244

RESUMO

Anion-exchange membrane (AEM) degradation during fuel cell operation represents the main challenge that hampers the implementation of AEM fuel cells (AEMFCs). Reported degradation values of AEMs are difficult to reproduce as no standard methods are used. The present use of different techniques based on exposure of membranes to aqueous KOH solutions under different conditions and measuring different outputs during time does not allow for a reliable and meaningful comparison of reported degradation data of different AEMs. In this study, we present a practical and reproducible ex-situ technique to measure AEM degradation in conditions that mimic an operando fuel cell environment. In this novel technique, we measure the change of the true hydroxide conductivity of the AEM over time, while exposing it to different relative humidity conditions. The technique does not make use of liquid alkaline solution, thus simulating real fuel cell conditions and providing a good baseline for comparative degradation studies.

15.
RSC Adv ; 10(60): 36467-36477, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35517956

RESUMO

Radiation-grafted anion-exchange membranes (RG-AEM) in alkaline membrane fuel cells (AEMFC) exhibit promising performances (low in situ resistances, high power outputs and reasonably high alkali stabilities). Much research is focused on developing AEMs with enhanced chemical stabilities in the OH--forms at temperatures >60 °C. This study contributes towards this effort by providing a comparison of three different ex situ methods of screening alkali stabilities (where different laboratories conducted experiments on exactly the same batches of RG-AEM). Vinylbenzyl chloride monomer was radiation-grafted onto 25 µm thick low-density polyethylene (LDPE) precursor film in a single batch. This batch of grafted membrane was then split into three sub-batches, which were converted into RG-AEMs via amination with either: trimethylamine (TMA), N-methylpyrrolidine (MPY), or N-methylpiperidine (MPIP). Samples of each RG-AEM (l-AEM-TMA, l-AEM-MPY, and l-AEM-MPIP) were then distributed between the three collaborating institutes for evaluation using each institutes' test protocols. Out of the three head-group chemistries, the l-AEM-TMA generally exhibits the best balance of conductivity and ex situ alkali degradation, especially in lower humidity environments. The l-AEM-TMA also exhibited interestingly high Cl- ion conductivities (ca. 100 mS cm-1) when heated to 80 °C in a relative humidity RH = 95% atmosphere, a measurement frequently overlooked in favour of determining conductivities of RG-AEMs submerged in water (conductivities of submerged RG-AEMs can be suppressed due to excessive water contents and swelling).

16.
Nat Commun ; 11(1): 3561, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678101

RESUMO

There is a need to understand the water dynamics of alkaline membrane fuel cells under various operating conditions to create electrodes that enable high performance and stable, long-term operation. Here we show, via operando neutron imaging and operando micro X-ray computed tomography, visualizations of the spatial and temporal distribution of liquid water in operating cells. We provide direct evidence for liquid water accumulation at the anode, which causes severe ionomer swelling and performance loss, as well as cell dryout from undesirably low water content in the cathode. We observe that the operating conditions leading to the highest power density during polarization are not generally the conditions that allow for long-term stable operation. This observation leads to new catalyst layer designs and gas diffusion layers. This study reports alkaline membrane fuel cells that can be operated continuously for over 1000 h at 600 mA cm-2 with voltage decay rate of only 32-µV h-1 - the best-reported durability to date.

17.
Biosens Bioelectron ; 150: 111897, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31786018

RESUMO

Flexible wearable chemical sensors are emerging tools which target diagnosis and monitoring of medical conditions. One of the potential applications of wearable chemical sensors is therapeutic drug monitoring for drugs that have a narrow therapeutic range such as lithium. We have investigated the possibility of developing a fibre-based device for non-invasive lithium drug monitoring in interstitial fluid. A flexible cotton-based lithium sensor was coupled with a carbon fibre-based reference electrode to obtain a potentiometric device. In vitro reverse iontophoresis experiments were performed to extract Li+ from under porcine skin by applying a current density of 0.4 mA cm-2 via two electrodes. Carbon fibre-based reverse iontophoresis electrodes were fabricated and used instead of a conventional silver wire-based version and comparable results were obtained. The fibre-based Li+ sensor and reference electrodes were capable of determining the Li+ concentration in samples collected via reverse iontophoresis and the results compared well to those obtained by ion chromatography. Additionally, biocompatibility of the materials used have been tested. Promising results were obtained which confirm the possibility of monitoring lithium in interstitial fluid using a wearable sensor.


Assuntos
Antidepressivos/análise , Fibra de Algodão , Monitoramento de Medicamentos/instrumentação , Compostos de Lítio/análise , Técnicas Biossensoriais/instrumentação , Linhagem Celular , Fibra de Algodão/análise , Eletrodos , Estudos de Viabilidade , Humanos , Lítio/análise , Dispositivos Eletrônicos Vestíveis
18.
iScience ; 12: 260-269, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30711749

RESUMO

Elucidating the effect of harsh environments on the activities of microorganisms is important in revealing how microbes withstand unfavorable conditions or evolve mechanisms to counteract those effects, many of which involve electron transfer phenomena. Here we show that the non-acidophilic and non-thermophilic Bacillus subtilis is able to maintain activity after being subjected to extreme temperatures (100°C for up to 8 h) and acidic environments (pH = 1.50 for over 2 years). In the process, our results suggest that B. subtilis utilizes an extracellular electron transfer as an electron communication pathway between B. subtilis and the environment that involves the cofactor nicotinamide adenine dinucleotide as an essential participant to maintain viability. Elucidation of the capability of the non-acidophilic and non-thermophilic strain to maintain viability under these extreme conditions could aid in understanding the cell responses to different environments from the perspective of energy conservation pathways.

19.
ACS Sens ; 3(9): 1802-1810, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30095251

RESUMO

A miniaturized, flexible fiber-based lithium sensor was fabricated from low-cost cotton using a simple, repeatable dip-coating technique. This lithium sensor is highly suited for ready-to-use wearable applications and can be used directly without the preconditioning steps normally required with traditional ion-selective electrodes. The sensor has a stable, rapid, and accurate response over a wide Li+ concentration range that spans over the clinically effective and the toxic concentration limits for lithium in human serum. The sensor is selective to Li+ in human plasma even in the presence of a high concentration of Na+ ions. This novel sensor concept represents a significant advance in wearable sensor technology which will target lithium drug monitoring from under the skin.


Assuntos
Fibra de Algodão , Líquido Extracelular/química , Lítio/sangue , Dispositivos Eletrônicos Vestíveis , Monitoramento de Medicamentos/instrumentação , Monitoramento de Medicamentos/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Concentração de Íons de Hidrogênio , Nanotubos de Carbono/química , Testes Imediatos
20.
Chem Commun (Camb) ; 53(86): 11771-11773, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29034381

RESUMO

Anion-exchange membrane fuel cells face two challenges: performance and durability. Addressing the first, we demonstrate high performance with both O2 and CO2-free air supplies, even when using a Ag/C cathode. This was enabled by the development of a radiation-grafted anion-exchange membrane that was less than 30 µm thick when hydrated.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa