Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
PLoS Comput Biol ; 20(1): e1011714, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236828

RESUMO

Disentangling the impact of the weather on transmission of infectious diseases is crucial for health protection, preparedness and prevention. Because weather factors are co-incidental and partly correlated, we have used geography to separate out the impact of individual weather parameters on other seasonal variables using campylobacteriosis as a case study. Campylobacter infections are found worldwide and are the most common bacterial food-borne disease in developed countries, where they exhibit consistent but country specific seasonality. We developed a novel conditional incidence method, based on classical stratification, exploiting the long term, high-resolution, linkage of approximately one-million campylobacteriosis cases over 20 years in England and Wales with local meteorological datasets from diagnostic laboratory locations. The predicted incidence of campylobacteriosis increased by 1 case per million people for every 5° (Celsius) increase in temperature within the range of 8°-15°. Limited association was observed outside that range. There were strong associations with day-length. Cases tended to increase with relative humidity in the region of 75-80%, while the associations with rainfall and wind-speed were weaker. The approach is able to examine multiple factors and model how complex trends arise, e.g. the consistent steep increase in campylobacteriosis in England and Wales in May-June and its spatial variability. This transparent and straightforward approach leads to accurate predictions without relying on regression models and/or postulating specific parameterisations. A key output of the analysis is a thoroughly phenomenological description of the incidence of the disease conditional on specific local weather factors. The study can be crucially important to infer the elusive mechanism of transmission of campylobacteriosis; for instance, by simulating the conditional incidence for a postulated mechanism and compare it with the phenomenological patterns as benchmark. The findings challenge the assumption, commonly made in statistical models, that the transformed mean rate of infection for diseases like campylobacteriosis is a mere additive and combination of the environmental variables.


Assuntos
Infecções por Campylobacter , Campylobacter , Doenças Transmissíveis , Gastroenterite , Humanos , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , País de Gales/epidemiologia , Tempo (Meteorologia) , Estações do Ano , Inglaterra/epidemiologia , Incidência , Doenças Transmissíveis/epidemiologia
2.
Med J Aust ; 220(1): 29-34, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38030130

RESUMO

OBJECTIVES: To estimate the number of deaths and the cost of deaths attributable to wood heater smoke in the Australian Capital Territory. STUDY DESIGN: Rapid health impact assessment, based on fine particulate matter (PM2.5 ) data from three outdoor air pollution monitors and published exposure-response functions for natural cause mortality attributed to PM2.5 exposure. SETTING: Australian Capital Territory (population, 2021: 454 000), 2016-2018, 2021, and 2022 (2019 and 2020 excluded because of the impact of extreme bushfires on air quality). MAIN OUTCOME MEASURES: Proportion of PM2.5 exposure attributable to wood heaters; numbers of deaths and associated cost of deaths (based on the value of statistical life: $5.3 million) attributable to wood heater smoke. RESULTS: Wood heater emissions contributed an estimated 1.16-1.73 µg/m3 to the annual mean PM2.5 concentration during the three colder years (2017, 2018, 2021), or 17-25% of annual mean exposure, and 0.72 µg/m3 (15%) or 0.89 µg/m3 (13%) during the two milder years (2016, 2022). Using the most conservative exposure-response function, the estimated annual number of deaths attributable to wood heater smoke was 17-26 during the colder three years and 11-15 deaths during the milder two years. Using the least conservative exposure-response function, an estimated 43-63 deaths per year (colder years) and 26-36 deaths per year (milder years) were attributable to wood heater smoke. The estimated annual equivalent cost of deaths was $57-136 million (most conservative exposure-response function) and $140-333 million (least conservative exposure-response function). CONCLUSIONS: The estimated annual number of deaths in the ACT attributable to wood heater PM2.5 pollution is similar to that attributed to the extreme smoke of the 2019-20 Black Summer bushfires. The number of wood heaters should be reduced by banning new installations and phasing out existing units in urban and suburban areas.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Fumaça/efeitos adversos , Poluentes Atmosféricos/análise , Território da Capital Australiana , Madeira/efeitos adversos , Madeira/química , Avaliação do Impacto na Saúde , Austrália/epidemiologia , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos , Exposição Ambiental/efeitos adversos
3.
Med J Aust ; 220(6): 282-303, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522009

RESUMO

The MJA-Lancet Countdown on health and climate change in Australia was established in 2017 and produced its first national assessment in 2018 and annual updates in 2019, 2020, 2021 and 2022. It examines five broad domains: health hazards, exposures and impacts; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. In this, the sixth report of the MJA-Lancet Countdown, we track progress on an extensive suite of indicators across these five domains, accessing and presenting the latest data and further refining and developing our analyses. Our results highlight the health and economic costs of inaction on health and climate change. A series of major flood events across the four eastern states of Australia in 2022 was the main contributor to insured losses from climate-related catastrophes of $7.168 billion - the highest amount on record. The floods also directly caused 23 deaths and resulted in the displacement of tens of thousands of people. High red meat and processed meat consumption and insufficient consumption of fruit and vegetables accounted for about half of the 87 166 diet-related deaths in Australia in 2021. Correction of this imbalance would both save lives and reduce the heavy carbon footprint associated with meat production. We find signs of progress on health and climate change. Importantly, the Australian Government released Australia's first National Health and Climate Strategy, and the Government of Western Australia is preparing a Health Sector Adaptation Plan. We also find increasing action on, and engagement with, health and climate change at a community level, with the number of electric vehicle sales almost doubling in 2022 compared with 2021, and with a 65% increase in coverage of health and climate change in the media in 2022 compared with 2021. Overall, the urgency of substantial enhancements in Australia's mitigation and adaptation responses to the enormous health and climate change challenge cannot be overstated. Australia's energy system, and its health care sector, currently emit an unreasonable and unjust proportion of greenhouse gases into the atmosphere. As the Lancet Countdown enters its second and most critical phase in the leadup to 2030, the depth and breadth of our assessment of health and climate change will be augmented to increasingly examine Australia in its regional context, and to better measure and track key issues in Australia such as mental health and Aboriginal and Torres Strait Islander health and wellbeing.


Assuntos
Mudança Climática , Setor de Assistência à Saúde , Humanos , Austrália , Saúde Mental , Planejamento em Saúde
4.
Environ Res ; : 119565, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971356

RESUMO

BACKGROUND: Exposure to heat and cold poses a serious threat to human health. In the UK, hotter summers, milder winters and an ageing population will shift how populations experience temperature-related health burdens. Estimating future burdens can provide insights on the drivers of temperature-related health effects and removing biases in temperature projections is an essential step to generating these estimates, however, the impact of various methods of correction is not well examined. METHODS: We conducted a detailed health impact assessment by estimating mortality attributable to temperature at a baseline period (2007-2018) and in future decades (2030s, 2050s and 2070s). Epidemiological exposure-response relationships were derived for all England regions and UK countries, to quantify cold and heat risk, and temperature thresholds where mortality increases. UK climate projections 2018 (UKCP18)were bias-corrected using three techniques: correcting for mean bias (shift or SH), variability (bias-correction or BC) and extreme values (quantile mapping or QM). These were applied in the health impact assessment, alongside consideration of population ageing and growth to estimate future temperature-related mortality. FINDINGS: In the absence of adaptation and assuming a high-end emissions scenario (RCP8.5), annual UK temperature-related mortality is projected to increase, with substantial differences in raw vs. calibrated projections for heat-related mortality, but smaller differences for cold-related mortality. The BC approach gave an estimated 29 deaths per 100,000 in the 2070s, compared with 50 per 100,000 using uncorrected future temperatures. We also found population ageing may exert a bigger impact on future mortality totals than the impact from future increases in temperature alone. Estimating future health burdens associated with heat and cold is an important step towards equipping decision-makers to deliver suitable care to the changing population. Correcting inherent biases in temperature projections can improve the accuracy of projected health burdens to support health protection measures and long-term resilience planning.

5.
Environ Res ; 249: 118568, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417659

RESUMO

Climate, weather and environmental change have significantly influenced patterns of infectious disease transmission, necessitating the development of early warning systems to anticipate potential impacts and respond in a timely and effective way. Statistical modelling plays a pivotal role in understanding the intricate relationships between climatic factors and infectious disease transmission. For example, time series regression modelling and spatial cluster analysis have been employed to identify risk factors and predict spatial and temporal patterns of infectious diseases. Recently advanced spatio-temporal models and machine learning offer an increasingly robust framework for modelling uncertainty, which is essential in climate-driven disease surveillance due to the dynamic and multifaceted nature of the data. Moreover, Artificial Intelligence (AI) techniques, including deep learning and neural networks, excel in capturing intricate patterns and hidden relationships within climate and environmental data sets. Web-based data has emerged as a powerful complement to other datasets encompassing climate variables and disease occurrences. However, given the complexity and non-linearity of climate-disease interactions, advanced techniques are required to integrate and analyse these diverse data to obtain more accurate predictions of impending outbreaks, epidemics or pandemics. This article presents an overview of an approach to creating climate-driven early warning systems with a focus on statistical model suitability and selection, along with recommendations for utilizing spatio-temporal and machine learning techniques. By addressing the limitations and embracing the recommendations for future research, we could enhance preparedness and response strategies, ultimately contributing to the safeguarding of public health in the face of evolving climate challenges.


Assuntos
Mudança Climática , Doenças Transmissíveis , Modelos Estatísticos , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Humanos , Clima , Aprendizado de Máquina
6.
Health Promot Int ; 39(3)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722020

RESUMO

The health promotion literature that considers how scientific evidence can be effectively communicated tends to focus on evaluating the effectiveness of communication materials. This has resulted in a knowledge gap regarding effective knowledge translation processes. This study explores the process, reasoning and practices for developing books for children that incorporate evidence-based information to aid understanding of scientific evidence about health and environmental or natural disasters. This study is informed by a systematic review of the literature combined with responses to an email interview with authors of books for children. Nine published studies were included in the systematic review. Twenty-two authors responded to the email survey (25% response rate, following 86 invitations). We report seven key findings to guide the development of health-promoting books for children: (i) understand the needs and expectations of the audience, (ii) articulate the topic and research evidence, (iii) assemble a team with a mix of content knowledge and creative expertise, (iv) format should be chosen to suit the user group and guided by the creative team, (v) early testing with children and their support system is crucial, (vi) develop a dissemination strategy to reach the user group and (vii) engage in reflexivity through evaluation of effectiveness of messaging. The current investigation can guide the process, reasoning and practice of developing books for children that incorporate evidence about health and environmental disasters.


Assuntos
Livros , Promoção da Saúde , Humanos , Criança , Promoção da Saúde/métodos , Pesquisadores , Pesquisa Translacional Biomédica
7.
Med J Aust ; 217(9): 439-458, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36283699

RESUMO

The MJA-Lancet Countdown on health and climate change in Australia was established in 2017 and produced its first national assessment in 2018 and annual updates in 2019, 2020 and 2021. It examines five broad domains: climate change impacts, exposures and vulnerability; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. In this, the fifth year of the MJA-Lancet Countdown, we track progress on an extensive suite of indicators across these five domains, accessing and presenting the latest data and further refining and developing our analyses. Within just two years, Australia has experienced two unprecedented national catastrophes - the 2019-2020 summer heatwaves and bushfires and the 2021-2022 torrential rains and flooding. Such events are costing lives and displacing tens of thousands of people. Further, our analysis shows that there are clear signs that Australia's health emergency management capacity substantially decreased in 2021. We find some signs of progress with respect to health and climate change. The states continue to lead the way in health and climate change adaptation planning, with the Victorian plan being published in early 2022. At the national level, we note progress in health and climate change research funding by the National Health and Medical Research Council. We now also see an acceleration in the uptake of electric vehicles and continued uptake of and employment in renewable energy. However, we also find Australia's transition to renewables and zero carbon remains unacceptably slow, and the Australian Government's continuing failure to produce a national climate change and health adaptation plan places the health and lives of Australians at unnecessary risk today, which does not bode well for the future.


Assuntos
Mudança Climática , Energia Renovável , Humanos , Austrália , Planejamento em Saúde
8.
BMC Public Health ; 21(1): 282, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541323

RESUMO

BACKGROUND: Greenspace has been associated with health benefits in many contexts. An important pathway may be through outdoor physical activity. We use a novel approach to examine the link between greenspace microenvironments and outdoor physical activity levels in the HEALS study conducted in Edinburgh (UK), the Netherlands, and Athens and Thessaloniki (Greece). METHODS: Using physical activity tracker recordings, 118 HEALS participants with young children were classified with regard to daily minutes of moderate to vigorous physical activity (MVPA); 60 were classified with regard to the metabolic equivalent task (MET)-minutes for each of the 1014 active trips they made. Greenspace indicators were generated for Normalised Difference Vegetation Index (NDVI), tree cover density (TCD), and green land use (GLU). We employed linear mixed-effects models to analyse (1) daily MVPA in relation to greenspace within 300 m and 1000 m of residential addresses and (2) trip MET-minutes in relation to average greenspace within a 50 m buffer of walking/cycling routes. Models were adjusted for activity, walkability, bluespace, age, sex, car ownership, dog ownership, season, weekday/weekend day, and local meteorology. RESULTS: There was no clear association between MVPA-minutes and any residential greenspace measure. For example, in fully adjusted models, a 10 percentage point increase in NDVI within 300 m of home was associated with a daily increase of 1.14 (95% CI - 0.41 to 2.70) minutes of MVPA. However, we did find evidence to indicate greenspace markers were positively linked to intensity and duration of activity: in fully adjusted models, 10 percentage point increases in trip NDVI, TCD, and GLU were associated with increases of 10.4 (95% CI: 4.43 to 16.4), 10.6 (95% CI: 4.96 to 16.3), and 3.36 (95% CI: 0.00 to 6.72) MET-minutes, respectively. The magnitude of associations with greenspace tended to be greater for cycling. CONCLUSIONS: More strenuous or longer walking and cycling trips occurred in environments with more greenspace, but levels of residential greenspace did not have a clear link with outdoor MVPA. To build on our research, we suggest future work examine larger, more diverse populations and investigate the influence of greenspace for trip purpose and route preference.


Assuntos
Parques Recreativos , Características de Residência , Animais , Pré-Escolar , Cães , Europa (Continente) , Grécia , Humanos , Países Baixos
9.
Environ Res ; 187: 109688, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32474308

RESUMO

BACKGROUND: Climate change and extreme weather poses significant threats to community health, which need to be addressed by local health workforce. This study investigated the perceptions of primary healthcare professionals in Southern China on individual and institutional strategies for actions on health impacts of climate change and the related barriers. METHODS: A mixed methodological approach was adopted, involving a cross-sectional questionnaire survey of 733 primary healthcare professionals (including medical doctors, nurses, public health practitioners, allied health workers and managers) selected through a multistage cluster randomized sampling strategy, and in-depth interviews of 25 key informants in Guangdong Province, China. The questionnaire survey investigated the perceptions of respondents on the health impacts of climate change and the individual and institutional actions that need to be taken in response to climate change. Multivariate logistic regression models were established to determine sociodemographic factors associated with the perceptions. The interviews tapped into coping strategies and perceived barriers in primary health care to adapt to tackle challenges of climate change. Contents analyses were performed to extract important themes. RESULTS AND CONCLUSION: The majority (64%) of respondents agreed that climate change is happening, but only 53.6% believed in its human causes. Heat waves and infectious diseases were highly recognized as health problems associated with climate change. There was a strong consensus on the need to strengthen individual and institutional capacities in response to health impacts of climate change. The respondents believed that it is important to educate the public, take active efforts to control infectious vectors, and pay increased attention to the health care of vulnerable populations. The lack of funding and limited local workforce capacity is a major barrier for taking actions. Climate change should be integrated into primary health care development through sustainable governmental funding and resource support.


Assuntos
Mudança Climática , Dengue , China/epidemiologia , Estudos Transversais , Dengue/epidemiologia , Humanos , Atenção Primária à Saúde
10.
Environ Res ; 180: 108850, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670081

RESUMO

BACKGROUND/AIM: The exposome includes urban greenspace, which may affect health via a complex set of pathways, including reducing exposure to particulate matter (PM) and noise. We assessed these pathways using indoor exposure monitoring data from the HEALS study in four European urban areas (Edinburgh, UK; Utrecht, Netherlands; Athens and Thessaloniki, Greece). METHODS: We quantified three metrics of residential greenspace at 50 m and 100 m buffers: Normalised Difference Vegetation Index (NDVI), annual tree cover density, and surrounding green land use. NDVI values were generated for both summer and the season during which the monitoring took place. Indoor PM2.5 and noise levels were measured by Dylos and Netatmo sensors, respectively, and subjective noise annoyance was collected by questionnaire on an 11-point scale. We used random-effects generalised least squares regression models to assess associations between greenspace and indoor PM2.5 and noise, and an ordinal logistic regression to model the relationship between greenspace and road noise annoyance. RESULTS: We identified a significant inverse relationship between summer NDVI and indoor PM2.5 (-1.27 µg/m3 per 0.1 unit increase [95% CI -2.38 to -0.15]) using a 100 m residential buffer. Reduced (i.e., <1.0) odds ratios (OR) of road noise annoyance were associated with increasing summer (OR = 0.55 [0.31 to 0.98]) and season-specific (OR = 0.55 [0.32 to 0.94]) NDVI levels, and tree cover density (OR = 0.54 [0.31 to 0.93] per 10 percentage point increase), also at a 100 m buffer. In contrast to these findings, we did not identify any significant associations between greenspace and indoor noise in fully adjusted models. CONCLUSIONS: We identified reduced indoor levels of PM2.5 and noise annoyance, but not overall noise, with increasing outdoor levels of certain greenspace indicators. To corroborate our findings, future research should examine the effect of enhanced temporal resolution of greenspace metrics during different seasons, characterise the configuration and composition of green areas, and explore mechanisms through mediation modelling.


Assuntos
Poluição do Ar em Ambientes Fechados , Exposição Ambiental/estatística & dados numéricos , Ruído , Material Particulado , Poluentes Atmosféricos , Grécia , Países Baixos , Razão de Chances
12.
Glob Environ Change ; 42: 136-147, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28367001

RESUMO

The rise in greenhouse gas emissions from air travel could be reduced by individuals voluntarily abstaining from, or reducing, flights for leisure and recreational purposes. In theory, we might expect that people with pro-environmental value orientations and concerns about the risks of climate change, and those who engage in more pro-environmental household behaviours, would also be more likely to abstain from such voluntary air travel, or at least to fly less far. Analysis of two large datasets from the United Kingdom, weighted to be representative of the whole population, tested these associations. Using zero-inflated Poisson regression models, we found that, after accounting for potential confounders, there was no association between individuals' environmental attitudes, concern over climate change, or their routine pro-environmental household behaviours, and either their propensity to take non-work related flights, or the distances flown by those who do so. These findings contrasted with those for pro-environmental household behaviours, where associations with environmental attitudes and concern were observed. Our results offer little encouragement for policies aiming to reduce discretionary air travel through pro-environmental advocacy, or through 'spill-over' from interventions to improve environmental impacts of household routines.

13.
Int J Biometeorol ; 61(10): 1837-1848, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28500390

RESUMO

Exposure to pollen can contribute to increased hospital admissions for asthma exacerbation. This study applied an ecological time series analysis to examine associations between atmospheric concentrations of different pollen types and the risk of hospitalization for asthma in London from 2005 to 2011. The analysis examined short-term associations between daily pollen counts and hospital admissions in the presence of seasonal and long-term patterns, and allowed for time lags between exposure and admission. Models were adjusted for temperature, precipitation, humidity, day of week, and air pollutants. Analyses revealed an association between daily counts (continuous) of grass pollen and adult hospital admissions for asthma in London, with a 4-5-day lag. When grass pollen concentrations were categorized into Met Office pollen 'alert' levels, 'very high' days (vs. 'low') were associated with increased admissions 2-5 days later, peaking at an incidence rate ratio of 1.46 (95%, CI 1.20-1.78) at 3 days. Increased admissions were also associated with 'high' versus 'low' pollen days at a 3-day lag. Results from tree pollen models were inconclusive and likely to have been affected by the shorter pollen seasons and consequent limited number of observation days with higher tree pollen concentrations. Future reductions in asthma hospitalizations may be achieved by better understanding of environmental risks, informing improved alert systems and supporting patients to take preventive measures.


Assuntos
Asma/epidemiologia , Hospitalização/estatística & dados numéricos , Pólen , Adolescente , Adulto , Poluentes Atmosféricos/análise , Alérgenos/análise , Monitoramento Ambiental , Humanos , Londres/epidemiologia , Pessoa de Meia-Idade , Poaceae , Árvores , Adulto Jovem
14.
Environ Health ; 15 Suppl 1: 30, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26960714

RESUMO

Cities around the world face many environmental health challenges including contamination of air, water and soil, traffic congestion and noise, and poor housing conditions exacerbated by unsustainable urban development and climate change. Integrated assessment of these risks offers opportunities for holistic, low carbon solutions in the urban environment that can bring multiple benefits for public health. The Healthy-Polis consortium aims to protect and promote urban health through multi-disciplinary, policy-relevant research on urban environmental health and sustainability. We are doing this by promoting improved methods of health risk assessment, facilitating international collaboration, contributing to the training of research scientists and students, and engaging with key stakeholders in government, local authorities, international organisations, industry and academia. A major focus of the consortium is to promote and support international research projects coordinated between two or more countries. The disciplinary areas represented in the consortium are many and varied, including environmental epidemiology, modelling and exposure assessment, system dynamics, health impact assessment, multi-criteria decision analysis, and other quantitative and qualitative approaches. This Healthy-Polis special issue presents a range of case studies and reviews that illustrate the need for a systems-based understanding of the urban environment.


Assuntos
Saúde Ambiental , Saúde da População Urbana , Humanos
15.
Environ Health ; 15 Suppl 1: 33, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26961541

RESUMO

BACKGROUND: In the context of a warming climate and increasing urbanisation (with the associated urban heat island effect), interest in understanding temperature related health effects is growing. Previous reviews have examined how the temperature-mortality relationship varies by geographical location. There have been no reviews examining the empirical evidence for changes in population susceptibility to the effects of heat and/or cold over time. The objective of this paper is to review studies which have specifically examined variations in temperature related mortality risks over the 20(th) and 21(st) centuries and determine whether population adaptation to heat and/or cold has occurred. METHODS: We searched five electronic databases combining search terms for three main concepts: temperature, health outcomes and changes in vulnerability or adaptation. Studies included were those which quantified the risk of heat related mortality with changing ambient temperature in a specific location over time, or those which compared mortality outcomes between two different extreme temperature events (heatwaves) in one location. RESULTS: The electronic searches returned 9183 titles and abstracts, of which eleven studies examining the effects of ambient temperature over time were included and six studies comparing the effect of different heatwaves at discrete time points were included. Of the eleven papers that quantified the risk of, or absolute heat related mortality over time, ten found a decrease in susceptibility over time of which five found the decrease to be significant. The magnitude of the decrease varied by location. Only two studies attempted to quantitatively attribute changes in susceptibility to specific adaptive measures and found no significant association between the risk of heat related mortality and air conditioning prevalence within or between cities over time. Four of the six papers examining effects of heatwaves found a decrease in expected mortality in later years. Five studies examined the risk of cold. In contrast to the changes in heat related mortality observed, only one found a significant decrease in cold related mortality in later time periods. CONCLUSIONS: There is evidence that across a number of different settings, population susceptibility to heat and heatwaves has been decreasing. These changes in heat related susceptibility have important implications for health impact assessments of future heat related risk. A similar decrease in cold related mortality was not shown. Adaptation to heat has implications for future planning, particularly in urban areas, with anticipated increases in temperature due to climate change.


Assuntos
Aclimatação , Temperatura Baixa/efeitos adversos , Temperatura Alta/efeitos adversos , Saúde da População Urbana , Mudança Climática , Avaliação do Impacto na Saúde , Humanos
16.
Environ Health ; 15 Suppl 1: 27, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26961286

RESUMO

BACKGROUND: The Urban Heat Island (UHI) effect describes the phenomenon whereby cities are generally warmer than surrounding rural areas. Traditionally, temperature monitoring sites are placed outside of city centres, which means that point measurements do not always reflect the true air temperature of urban centres, and estimates of health impacts based on such data may under-estimate the impact of heat on public health. Climate change is likely to exacerbate heatwaves in future, but because climate projections do not usually include the UHI, health impacts may be further underestimated. These factors motivate a two-dimensional analysis of population weighted temperature across an urban area, for heat related health impact assessments, since populations are typically densest in urban centres, where ambient temperatures are highest and the UHI is most pronounced. We investigate the sensitivity of health impact estimates to the use of population weighting and the inclusion of urban temperatures in exposure data. METHODS: We quantify the attribution of the UHI to heat related mortality in the West Midlands during the heatwave of August 2003 by comparing health impacts based on two modelled temperature simulations. The first simulation is based on detailed urban land use information and captures the extent of the UHI, whereas in the second simulation, urban land surfaces have been replaced by rural types. RESULTS AND CONCLUSIONS: The results suggest that the UHI contributed around 50 % of the total heat-related mortality during the 2003 heatwave in the West Midlands. We also find that taking a geographical, rather than population-weighted, mean of temperature across the regions under-estimates the population exposure to temperatures by around 1 °C, roughly equivalent to a 20 % underestimation in mortality. We compare the mortality contribution of the UHI to impacts expected from a range of projected temperatures based on the UKCP09 Climate Projections. For a medium emissions scenario, a typical heatwave in 2080 could be responsible for an increase in mortality of around 3 times the rate in 2003 (278 vs. 90 deaths) when including changes in population, population weighting and the UHI effect in the West Midlands, and assuming no change in population adaptation to heat in future.


Assuntos
Cidades , Mudança Climática , Saúde Ambiental/métodos , Temperatura Alta/efeitos adversos , Mortalidade , Inglaterra , Humanos , Modelos Teóricos
17.
Environ Health ; 15 Suppl 1: 36, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26961700

RESUMO

Urban tree planting initiatives are being actively promoted as a planning tool to enable urban areas to adapt to and mitigate against climate change, enhance urban sustainability and improve human health and well-being. However, opportunities for creating new areas of green space within cities are often limited and tree planting initiatives may be constrained to kerbside locations. At this scale, the net impact of trees on human health and the local environment is less clear, and generalised approaches for evaluating their impact are not well developed.In this review, we use an urban ecosystems services framework to evaluate the direct, and locally-generated, ecosystems services and disservices provided by street trees. We focus our review on the services of major importance to human health and well-being which include 'climate regulation', 'air quality regulation' and 'aesthetics and cultural services'. These are themes that are commonly used to justify new street tree or street tree retention initiatives. We argue that current scientific understanding of the impact of street trees on human health and the urban environment has been limited by predominantly regional-scale reductionist approaches which consider vegetation generally and/or single out individual services or impacts without considering the wider synergistic impacts of street trees on urban ecosystems. This can lead planners and policymakers towards decision making based on single parameter optimisation strategies which may be problematic when a single intervention offers different outcomes and has multiple effects and potential trade-offs in different places.We suggest that a holistic approach is required to evaluate the services and disservices provided by street trees at different scales. We provide information to guide decision makers and planners in their attempts to evaluate the value of vegetation in their local setting. We show that by ensuring that the specific aim of the intervention, the scale of the desired biophysical effect and an awareness of a range of impacts guide the choice of i) tree species, ii) location and iii) density of tree placement, street trees can be an important tool for urban planners and designers in developing resilient and resourceful cities in an era of climatic change.


Assuntos
Poluição do Ar/prevenção & controle , Planejamento de Cidades , Saúde Ambiental , Saúde Pública , Árvores , Saúde da População Urbana , Cidades , Humanos
19.
Environ Res ; 136: 500-4, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25460672

RESUMO

During March and early April 2014 there was widespread poor air quality across the United Kingdom. Public Health England used existing syndromic surveillance systems to monitor community health during the period. Short lived statistically significant rises in a variety of respiratory conditions, including asthma and wheeze, were detected. This incident has demonstrated the value of real-time syndromic surveillance systems, during an air pollution episode, for helping to explore the impact of poor air quality on community health in real-time.


Assuntos
Poluição do Ar , Vigilância da População , Inglaterra/epidemiologia , Humanos
20.
Heliyon ; 10(2): e24532, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298653

RESUMO

Background: People living in Australian cities face increased mortality risks from exposure to extreme air pollution events due to bushfires and dust storms. However, the burden of mortality attributable to exceptional PM2.5 levels has not been well characterised. We assessed the burden of mortality due to PM2.5 pollution events in Australian capital cities between 2001 and 2020. Methods: For this health impact assessment, we obtained data on daily counts of deaths for all non-accidental causes and ages from the Australian National Vital Statistics Register. Daily concentrations of PM2.5 were estimated at a 5 km grid cell, using a Random Forest statistical model of data from air pollution monitoring sites combined with a range of satellite and land use-related data. We calculated the exceptional PM2.5 levels for each extreme pollution exposure day using the deviation from a seasonal and trend loess decomposition model. The burden of mortality was examined using a relative risk concentration-response function suggested in the literature. Findings: Over the 20-year study period, we estimated 1454 (95 % CI 987, 1920) deaths in the major Australian cities attributable to exceptional PM2.5 exposure levels. The mortality burden due to PM2.5 exposure on extreme pollution days was considerable. Variations were observed across Australia. Despite relatively low daily PM2.5 levels compared to global averages, all Australian cities have extreme pollution exposure days, with PM2.5 concentrations exceeding the World Health Organisation Air Quality Guideline standard for 24-h exposure. Our analysis results indicate that nearly one-third of deaths from extreme air pollution exposure can be prevented with a 5 % reduction in PM2.5 levels on days with exceptional pollution. Interpretation: Exposure to exceptional PM2.5 events was associated with an increased mortality burden in Australia's cities. Policies and coordinated action are needed to manage the health risks of extreme air pollution events due to bushfires and dust storms under climate change.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa