Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell Biochem Funct ; 42(2): e3932, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332678

RESUMO

Mucopolysaccharidosis type II (MPS II) is an inborn error of the metabolism resulting from several possible mutations in the gene coding for iduronate-2-sulfatase (IDS), which leads to a great clinical heterogeneity presented by these patients. Many studies demonstrate the involvement of oxidative stress in the pathogenesis of inborn errors of metabolism, and mitochondrial dysfunction and oxidative stress can be related since most of reactive oxygen species come from mitochondria. Cellular models have been used to study different diseases and are useful in biochemical research to investigate them in a new promising way. The aim of this study is to develop a heterozygous cellular model for MPS II and analyze parameters of oxidative stress and mitochondrial dysfunction and investigate the in vitro effect of genistein and coenzyme Q10 on these parameters for a better understanding of the pathophysiology of this disease. The HP18 cells (heterozygous c.261_266del6/c.259_261del3) showed almost null results in the activity of the IDS enzyme and presented accumulation of glycosaminoglycans (GAGs), allowing the characterization of this knockout cellular model by MPS II gene editing. An increase in the production of reactive species was demonstrated (p < .05 compared with WT vehicle group) and genistein at concentrations of 25 and 50 µm decreased in vitro its production (p < .05 compared with HP18 vehicle group), but there was no effect of coenzyme Q10 in this parameter. There was a tendency for lysosomal pH change in HP18 cells in comparison to WT group and none of the antioxidants tested demonstrated any effect on this parameter. There was no increase in the activity of the antioxidant enzymes superoxide dismutase and catalase and oxidative damage to DNA in HP18 cells in comparison to WT group and neither genistein nor coenzyme q10 had any effect on these parameters. Regarding mitochondrial membrane potential, genistein induced mitochondrial depolarization in both concentrations tested (p < .05 compared with HP18 vehicle group and compared with WT vehicle group) and incubation with coenzyme Q10 demonstrated no effect on this parameter. In conclusion, it is hypothesized that our cellular model could be compared with a milder MPS II phenotype, given that the accumulation of GAGs in lysosomes is not as expressive as another cellular model for MPS II presented in the literature. Therefore, it is reasonable to expect that there is no mitochondrial depolarization and no DNA damage, since there is less lysosomal impairment, as well as less redox imbalance.


Assuntos
Iduronato Sulfatase , Doenças Mitocondriais , Mucopolissacaridose II , Ubiquinona/análogos & derivados , Humanos , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/genética , Genisteína/farmacologia , Potencial da Membrana Mitocondrial , Estresse Oxidativo , Iduronato Sulfatase/metabolismo , Iduronato Sulfatase/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo
2.
Biochem Cell Biol ; 101(4): 294-302, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37042460

RESUMO

Lysosomal acid lipase deficiency (LALD) is an inborn error of metabolism that lacks satisfactory treatment, which leads to the development of severe hepatic and cardiac complications and may even lead to death. In this sense, knowledge of the mechanisms involved in the pathophysiology of this disorder becomes essential to allow the search for new therapeutic strategies. There are no studies in the literature investigating the role of reactive species and inflammatory processes in the pathophysiology of this disorder. Therefore, the aim of this work was to investigate parameters of oxidative and inflammatory stress in LALD patients. In this work, we obtained results that demonstrate that LALD patients are susceptible to oxidative stress caused by an increase in the production of free radicals, observed by the increase of 2-7-dihydrodichlorofluorescein. The decrease in sulfhydryl content reflects oxidative damage to proteins, as well as a decrease in antioxidant defenses. Likewise, the increase in urinary levels of di-tyrosine observed also demonstrates oxidative damage to proteins. Furthermore, the determination of chitotriosidase activity in the plasma of patients with LALD was significantly higher, suggesting a pro-inflammatory state. An increase in plasma oxysterol levels was observed in patients with LALD, indicating an important relationship between this disease and cholesterol metabolism and oxidative stress. Also, we observed in LALD patients increased levels of nitrate production. The positive correlation found between oxysterol levels and activity of chitotriosidase in these patients indicates a possible link between the production of reactive species and inflammation. In addition, an increase in lipid profile biomarkers such as total and low-density lipoprotein cholesterol were demonstrated in the patients, which reinforces the involvement of cholesterol metabolism. Thus, we can assume that, in LALD, oxidative and nitrosative damage, in addition to inflammatory process, play an important role in its evolution and future clinical manifestations. In this way, we can suggest that the study of the potential benefit of the use of antioxidant and anti-inflammatory substances as an adjuvant tool in the treatment will be important, which should be associated with the already recommended therapy.


Assuntos
Antioxidantes , Estresse Oxidativo , Humanos , Colesterol , Lipídeos , Doença de Wolman
3.
Arch Biochem Biophys ; 737: 109541, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36754222

RESUMO

Mucopolysaccharidosis type IV A (MPS IVA) is an inborn error of the metabolism (IEM) caused by a deficiency of the enzyme N-acetylgalactosamine 6-sulfate sulfatase (GALNS). Since 2014, enzyme replacement therapy (ERT) is the recommended treatment for these patients. It is known that the inflammatory response is closely related to antioxidant defenses and oxidative stress, and literature shows involvement of oxidative stress in the pathogenesis of IEM. The aim of this study is to investigate the mechanisms of oxidative/nitrative stress and inflammation in patients with MPS IVA under long-term ERT. In the present work we investigate parameters of oxidative/nitrative stress in plasma and urine of MPS IVA patients under long-term ERT and controls, such as plasmatic nitrate/nitrite levels using the LDH Method, urinary di-tyrosine levels by fluorometric method, plasmatic content of sulfhydryl groups, urinary oxidized guanine species by ELISA kit and the plasmatic total antioxidant status. We next evaluated the plasmatic pro and anti-inflammatory cytokines concentration (IL-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, TNF-α) and the expression of factors and enzymes Nrf-2, NF-κß and HO-1, main mediators between inflammation and oxidative stress. In concern to the oxidative/nitrative stress parameters, there was no significant difference between the groups MPS IVA patients under long-term ERT and controls, showing that there is no overproducing of RNS, no protein damage, no DNA/RNA oxidative damage and no modification in the non-enzymatic antioxidant capacity of a tissue to prevent the damage associated to free radical processes in these patients. It was also verified no significant difference between the MPS IVA patients under long-term ERT and controls groups regarding the production of proinflammatory cytokines. About anti-inflammatory cytokines, IL 10 was shown to be elevated in MPS IVA patients under long-term ERT in comparison to the control group. We next evaluated the genic expression of Nrf-2, NF-κß and HO-1and there was no significant difference between the MPS IVA patients under long-term ERT and control groups. In conclusion, MPS IVA patients under long term ERT are not in an inflammatory state and there is no alteration in genic expression in the genes analyzed which are involved in oxidative stress and inflammatory pathways. It is,however, important to consider that absence of imbalance of antioxidant defenses in MPS IVA patients under long term ERT is so far preliminary it is supported by methodologies that are not highly sensitive nor very accurate. Further experiments in future using state-of-the-art methodologies will corroborate these findings. Nevertheless, our results demonstrated the protective effect of the treatment in relation to the parameters studied and the importance of starting treatment in the early stages of the disease.


Assuntos
Condroitina Sulfatases , Mucopolissacaridose IV , Humanos , Mucopolissacaridose IV/tratamento farmacológico , Mucopolissacaridose IV/genética , Terapia de Reposição de Enzimas/métodos , Antioxidantes/farmacologia , Estresse Oxidativo , Citocinas/metabolismo , Inflamação , Condroitina Sulfatases/genética , Condroitina Sulfatases/metabolismo , Condroitina Sulfatases/uso terapêutico
4.
Arch Biochem Biophys ; 736: 109526, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702451

RESUMO

Urea cycle disorders (UCD) are inborn errors of metabolism that occur due to a loss of function in enzymes and transporters involved in the urea cycle, causing an intoxication by hyperammonemia and accumulation of metabolites. Patients can develop hepatic encephalopathy (HE), severe neurological and motor disabilities, and often death. The mechanisms involved in the pathophysiology of UCD are many and complex, but there are strong indications that oxidative stress and inflammation are present, being responsible for at least part of the cellular damage that occurs in these diseases. The aim of this study was to evaluate oxidative and nitrosative damage and inflammation in UCD, to better understand the pathophysiology mechanisms of these diseases. We evaluated the nitrite and nitrate content, thiobarbituric acid-reactive substances (TBARS), carbonyl protein content and a panel of cytokines in plasma sample of 14 patients. The UCD patients group consisted of individuals affected with ornithine transcarbamylase deficiency (n = 8), carbamoyl phosphate synthetase deficiency (n = 2), argininosuccinate synthetase deficiency (n = 2); arginase 1 deficiency (n = 1) and argininosuccinate lyase deficiency (n = 1). Patients mean age at diagnosis was 5.25 ± 9.86 years-old and mean concentrations were compared with healthy individuals of matched age and gender. We found a significant reduction in nitrogen reactive species in patients when compared to controls. TBARS was increased in patients, indicating lipid peroxidation. To evaluate protein oxidative damage in UCD, the carbonyl content was measured, and the results also demonstrated an increase in this biomarker. Finally, we found that UCD patients have enhanced concentrations of cytokines, with pro-inflammatory interleukins IL-6, IL-8, interferon-γ and TNF-α, and anti-inflammatory IL-10 being increased when compared to the control group. In conclusion, our results demonstrate that oxidative stress and inflammation occurs in UCD and probably contribute to the severe brain damage present in patients.


Assuntos
Distúrbios Congênitos do Ciclo da Ureia , Adolescente , Criança , Pré-Escolar , Humanos , Citocinas/metabolismo , Inflamação , Estresse Oxidativo , Substâncias Reativas com Ácido Tiobarbitúrico , Ureia , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Recém-Nascido , Lactente
5.
Arch Biochem Biophys ; 735: 109510, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36608914

RESUMO

Niemann-Pick type C1 (NPC1) is a fatal inherited disease, caused by pathogenic variants in NPC1 gene, which leads to intracellular accumulation of non-esterified cholesterol and glycosphingolipids. This accumulation leads to a wide range of clinical manifestations, including neurological and cognitive impairment as well as psychiatric disorders. The pathophysiology of cerebral damage involves loss of Purkinje cells, synaptic disturbance, and demyelination. Miglustat, a reversible inhibitor of glucosylceramide synthase, is an approved treatment for NPC1 and can slow neurological damage. The aim of this study was to assess the levels of peripheric neurodegeneration biomarkers of NPC1 patients, namely brain-derived neurotrophic factor (BDNF), platelet-derived growth factors (PDGF-AA and PDGF-AB/BB), neural cell adhesion molecule (NCAM), PAI-1 Total and Cathepsin-D, as well as the levels of cholestane-3ß,5α,6ß-triol (3ß,5α,6ß-triol), a biomarker for NPC1. Molecular analysis of the NPC1 patients under study was performed by next generation sequencing (NGS) in cultured fibroblasts. We observed that NPC1 patients treated with miglustat have a significant decrease in PAI-1 total and PDGF-AA concentrations, and no alteration in BDNF, NCAM, PDGF-AB/BB and Cathepsin D. We also found that NPC1 patients treated with miglustat have normalized levels of 3ß,5α,6ß-triol. The molecular analysis showed four described mutations, and for two patients was not possible to identify the second mutated allele. Our results indicate that the decrease of PAI-1 and PDGF-AA in NPC1 patients could be involved in the pathophysiology of this disease. This is the first work to analyze those plasmatic markers of neurodegenerative processes in NPC1 patients.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Doença de Niemann-Pick Tipo C , Humanos , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/patologia , Inibidor 1 de Ativador de Plasminogênio , Fator de Crescimento Derivado de Plaquetas , Biomarcadores , Becaplermina
6.
Arch Biochem Biophys ; 749: 109792, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37863349

RESUMO

Phenylketonuria (PKU) is the most common inherited metabolic disorders caused by severe deficiency or absence of phenylalanine hydroxylase activity that converts phenylalanine (Phe) to tyrosine. PKU patients were treated with a Phe restricted diet supplemented with a special formula containing l-carnitine (L-car), well-known antioxidant compound. The lack of treatment can cause neurological and cognitive impairment, as severe mental retardation, neuronal cell loss and synaptic density reduction. Although Phe has been widely demonstrated to be involved in PKU neurotoxicity, the mechanisms responsible for the CNS injury are still not fully known. In this work, we evaluated markers of neurodegeneration, namely BDNF (brain-derived neurotrophic factor), PAI-1 total (Plasminogen activator inhibitor-1 total), Cathepsin D, PDGF AB/BB (platelet-derived growth factor), and NCAM (neuronal adhesion molecule) in plasma of PKU patients at early and late diagnosis and under treatment. We found decreased Phe levels and increased L-car concentrations in PKU patients treated with L-car compared to the other groups, indicating that the proposed treatment was effective. Furthermore, we found increased BDNF levels in the patients under treatment compared to patients at early diagnosis, and a positive correlation between BDNF and L-car and a negative correlation between BDNF and Phe. Our results may indicate that in PKU patients treated with L-car there is an attempt to adjust neuronal plasticity and recover the damage suffered, reflecting a compensatory response to brain injury.


Assuntos
Carnitina , Fenilcetonúrias , Humanos , Fator Neurotrófico Derivado do Encéfalo , Fenilcetonúrias/tratamento farmacológico , Suplementos Nutricionais , Antioxidantes , Fenilalanina , Becaplermina
7.
Crit Care ; 27(1): 239, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328874

RESUMO

BACKGROUND: Animal models of acute respiratory distress syndrome (ARDS) do not completely resemble human ARDS, struggling translational research. We aimed to characterize a porcine model of ARDS induced by pneumonia-the most common risk factor in humans-and analyze the additional effect of ventilator-induced lung injury (VILI). METHODS: Bronchoscopy-guided instillation of a multidrug-resistant Pseudomonas aeruginosa strain was performed in ten healthy pigs. In six animals (pneumonia-with-VILI group), pulmonary damage was further increased by VILI applied 3 h before instillation and until ARDS was diagnosed by PaO2/FiO2 < 150 mmHg. Four animals (pneumonia-without-VILI group) were protectively ventilated 3 h before inoculum and thereafter. Gas exchange, respiratory mechanics, hemodynamics, microbiological studies and inflammatory markers were analyzed during the 96-h experiment. During necropsy, lobar samples were also analyzed. RESULTS: All animals from pneumonia-with-VILI group reached Berlin criteria for ARDS diagnosis until the end of experiment. The mean duration under ARDS diagnosis was 46.8 ± 7.7 h; the lowest PaO2/FiO2 was 83 ± 5.45 mmHg. The group of pigs that were not subjected to VILI did not meet ARDS criteria, even when presenting with bilateral pneumonia. Animals developing ARDS presented hemodynamic instability as well as severe hypercapnia despite high-minute ventilation. Unlike the pneumonia-without-VILI group, the ARDS animals presented lower static compliance (p = 0.011) and increased pulmonary permeability (p = 0.013). The highest burden of P. aeruginosa was found at pneumonia diagnosis in all animals, as well as a high inflammatory response shown by a release of interleukin (IL)-6 and IL-8. At histological examination, only animals comprising the pneumonia-with-VILI group presented signs consistent with diffuse alveolar damage. CONCLUSIONS: In conclusion, we established an accurate pulmonary sepsis-induced ARDS model.


Assuntos
Pneumonia , Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Suínos , Animais , Síndrome do Desconforto Respiratório/diagnóstico , Pulmão/patologia , Pneumonia/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Mecânica Respiratória , Respiração Artificial/efeitos adversos
8.
Exp Cell Res ; 416(2): 113175, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35487270

RESUMO

Niemann Pick type C is an inborn error of metabolism (IEM), classified as a lysosomal storage disease (LSD) caused by a dysfunction in NPC transport protein, that leads to intracellular accumulation of non-esterified cholesterol and other lipids. Clinical manifestations are ample, with visceral and neurological symptoms. Miglustat, a molecule that reversibly inhibits glucosylceramide synthase is used as treatment for this disorder. Studies demonstrated the influence of oxidative stress and inflammation in IEM, as well in animal model of NP-C disease. Nonetheless, literature lacks data on patients, so our work aimed to investigate if there is influence of chronic inflammation in the pathophysiology of NP-C disease, and the effect of miglustat, N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). We evaluated the plasmatic cytokines in NPC patients at diagnosis and during the treatment with miglustat. Additionally, we performed an in vitro study with antioxidants NAC (1 mM and 2.5 mM) and CoQ10 (5 µM and 10 µM), where we could verify its effect on inflammatory parameters, as well as in cholesterol accumulation. Our results showed that NP-C patients have higher plasmatic levels of pro and anti-inflammatory cytokines (IL-6, IL-8, and IL-10) at diagnosis and the treatment with miglustat was able to restore it. In vitro study showed that treatment with antioxidants in higher concentrations significantly decrease cholesterol accumulation, and NAC at 2.5 mM normalized the level of pro-inflammatory cytokines. Although the mechanism is not completely clear, it can be related to restoration in lipid traffic and decrease in oxidative stress caused by antioxidants.


Assuntos
Doença de Niemann-Pick Tipo C , 1-Desoxinojirimicina/análogos & derivados , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Colesterol , Citocinas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Ubiquinona/análogos & derivados
9.
Cell Biochem Funct ; 41(4): 490-500, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37170672

RESUMO

Phenylketonuria (PKU) was the first genetic disease to have an effective therapy, which consists of phenylalanine intake restriction. However, there are patients who do not adhere to treatment and/or are not submitted to neonatal screening. PKU patients present L-carnitine (L-car) deficiency, compound that has demonstrated an antioxidant and anti-inflammatory role in metabolic diseases. This study evaluated the effect caused by exposure time to high Phe levels in PKU patients at early and late diagnosis, through pro- and anti-inflammatory cytokines, as well as the L-car effect in patients under treatment. It was observed that there was a decrease in phenylalanine levels in treated patients compared to patients at diagnosis, and an increase in L-car levels in the patients under treatment. Inverse correlation between Phe versus L-car and nitrate plus nitrite versus L-car in PKU patients was also showed. We found increased proinflammatory cytokines levels: interleukin (IL)-1ß, interferons (IFN)-gamma, IL-2, tumor necrosis factor (TNF)-alpha, IL-8 and IL-6 in the patients at late diagnosis compared to controls, and IL-8 in the patients at early diagnosis and treatment compared to controls. Increased IL-2, TNF-alpha, IL-6 levels in the patients at late diagnosis compared to early diagnosis were shown, and reduced IL-6 levels in the treated patients compared to patients at late diagnosis. Moreover, it verified a negative correlation between IFN-gamma and L-car in treated patients. Otherwise, it was observed that there were increased IL-4 levels in the patients at late diagnosis compared to early diagnosis, and reduction in treated patients compared to late diagnosed patients. In urine, there was an increase in 8-isoprostane levels in the patients at diagnosis compared to controls and a decrease in oxidized guanine species in the treated patients compared to the diagnosed patients. Our results demonstrate for the first time in literature that time exposure to high Phe concentrations generates a proinflammatory status, especially in PKU patients with late diagnosis. A pro-oxidant status was verified in not treated PKU patients. Our results demonstrate the importance of early diagnosis and prompt start of treatment, in addition to the importance of L-car supplementation, which can improve cellular defense against inflammation and oxidative damage in PKU patients.


Assuntos
Citocinas , Fenilcetonúrias , Recém-Nascido , Humanos , Fenilalanina , Diagnóstico Tardio , Interleucina-2 , Interleucina-6 , Interleucina-8 , Carnitina/farmacologia , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/urina , Fator de Necrose Tumoral alfa
10.
BMC Public Health ; 23(1): 953, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231441

RESUMO

INTRODUCTION: Co-creation of healthy food retail comprises the systematic collaboration between retailers, academics and other stakeholders to improve the healthiness of food retail environments. Research into the co-creation of healthy food retail is in its early stages. Knowledge of the roles and motivations of stakeholders in intervention design, implementation and evaluation can inform successful co-creation initiatives. This study presents academic experiences of stakeholder roles and motivations in the co-creation of healthy food retail environments. METHODS: Purposive sampling of academics with research experience in the co-creation of healthy food retail initiatives. Semi-structured interviews conducted between October and December 2021 gathered participants' experiences of multi-stakeholder collaborative research. Thematic analysis identified enablers, barriers, motivations, lessons and considerations for future co-creation of healthy food retail. RESULTS: Nine interviewees provided diverse views and applications of co-creation research in food retail environments. Ten themes were grouped into three overarching areas: (i) identification of stakeholders required for changes to healthier food retail; (ii) motivations and interactions, which included the intrinsic desire to build healthier communities along with recognition of their work; and (iii) barriers and enablers included adequate resourcing, effective and trusting working relationships and open communications. CONCLUSION: This study provides insights that could help future co-creation in healthy food retail environments. Trusting and respectful relationships and reciprocal acknowledgement between stakeholders are key practices in the co-creation process. These constructs should be considered in developing and testing a model that helps to systematically co-create healthy food retail initiatives that ensure all parties meet their needs while also delivering research outcomes.


Assuntos
Alimentos , Marketing , Humanos , Abastecimento de Alimentos , Nível de Saúde , Motivação
11.
Metab Brain Dis ; 38(2): 519-529, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36029429

RESUMO

Mucopolysaccharidosis type II (MPS II or Hunter Syndrome) is a lysosomal disease caused by deficient degradation of glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate due to the deficiency of the enzyme iduronate-2-sulfatase. The main treatment for MPS II is the administration of the recombinant form of the enzyme, in a process known as enzyme replacement therapy (ERT). Oxidative damage can contribute to the pathophysiology of MPS II and treatment with ERT can reduce the effects of oxidative stress. For a better understanding of pathophysiology of MPS II, we evaluated biomarkers of mitochondrial dysfunction, DNA (Deoxyribonucleic acid) damage, antioxidant defenses, reactive species production and lysosomal size in IDS-deficient HEK 293 cells and investigate the in vitro effect of genistein and coenzyme Q10 (CoQ) on these biomarkers. An increase in the production of reactive species was demonstrated, as well as an increase in the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Also, an increase in lysosomal volume and oxidative damage to DNA were verified. There was no evidence of a change in mitochondrial function in this cell model. In the HEK 293 (human embryonic kidney 293) knockout (KO) HP10 cell model we found that genistein at concentrations of 25 and 50 µm decreased in vitro the production of reactive species and the activity of the SOD enzyme, showing an antioxidant protective effect. Still, in these cells we verified that the coenzyme Q10 in the concentrations of 5 and 10 µm decreased in vitro the activity of the SOD enzyme and in the concentration of 10 µm decreased in vitro the DNA damage, also demonstrating antioxidant protection. In conclusion, MPS II knockout cells demonstrated oxidative stress and DNA damage and genistein, as well as coenzyme Q10, have been shown to have an important protective effect in vitro against these oxidative damages.


Assuntos
Mucopolissacaridose II , Humanos , Mucopolissacaridose II/tratamento farmacológico , Genisteína/farmacologia , Células HEK293 , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Glicosaminoglicanos/metabolismo , Mitocôndrias/metabolismo , Biomarcadores/metabolismo , Superóxido Dismutase/metabolismo
12.
Metab Brain Dis ; 38(2): 507-518, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36447062

RESUMO

Niemann-Pick C disease (NPC) is an autosomal recessive genetic disorder resulting from mutation in one of two cholesterol transport genes: NPC1 or NPC2, causing accumulation of unesterified cholesterol, together with glycosphingolipids, within the endosomal/lysosomal compartment of cells. The result is a severe disease in both multiple peripheral organs and the central nervous system, causing neurodegeneration and early death. However, the pathophysiological mechanisms of NPC1 remain poorly understood. Recent studies have shown that the primary lysosomal defect found in fibroblasts from NPC1 patients is accompanied by a deregulation of mitochondrial organization and function. There is currently no cure for NPC1, but recently the potential of ß-cyclodextrin (ß-CD) for the treatment of the disease was discovered, which resulted in the redistribution of cholesterol from subcellular compartments to the circulation and increased longevity in an animal model of NPC1. Considering the above, the present work evaluated the in vitro therapeutic potential of ß-CD to reduce cholesterol in fibroblasts from NPC1 patients. ß-CD was used in its free and nanoparticulate form. We also evaluated the ß-CD potential to restore mitochondrial functions, as well as the beneficial combined effects of treatment with antioxidants N-Acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). Besides, we evaluated oxidative and nitrative stress parameters in NPC1 patients. We showed that oxidative and nitrative stress could contribute to the pathophysiology of NPC1, as the levels of lipoperoxidation and the nitrite and nitrate levels were increased in these patients when compared to healthy individuals, as well as DNA damage. The nanoparticles containing ß-CD reduced the cholesterol accumulated in the NPC1 fibroblasts. This result was potentiated by the concomitant use of the nanoparticles with the antioxidants NAC and CoQ10 compared to those presented by healthy individuals cells ́. In addition, treatments combining ß-CD nanoparticles and antioxidants could reduce mitochondrial oxidative stress, demonstrating advantages compared to free ß-CD. The results obtained are promising regarding the combined use of ß-CD loaded nanoparticles and antioxidants in the treatment of NPC1 disease.


Assuntos
Doença de Niemann-Pick Tipo C , beta-Ciclodextrinas , Animais , Doença de Niemann-Pick Tipo C/genética , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , beta-Ciclodextrinas/farmacologia , beta-Ciclodextrinas/uso terapêutico , beta-Ciclodextrinas/metabolismo , Oxirredução , Mitocôndrias/metabolismo , Colesterol/metabolismo
13.
Aust J Rural Health ; 31(4): 659-669, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37200454

RESUMO

OBJECTIVE: To describe participants' lived experience of co-creating and implementing initiatives to improve children's health. DESIGN: This manuscript reports an embedded case study design, which aims to describe participants' lived experiences of co-creating community-based initiatives. Information was gathered from an online survey and two focus groups. The two transcribed discussions from the focus groups were analysed using a 6-step phenomenological process. SETTING: Mansfield, Australia, population 4787, is one of ten local government areas (LGA) participating in the Reflexive Evidence and Systems Interventions to Prevent Obesity and Non-communicable Disease (RESPOND) project. PARTICIPANTS: Participants were purposively selected from established community groups previously engaged by RESPOND using a co-creation approach. The recruitment for the focus groups was a convenient sampling from participants that provided their email addresses in the online survey. RESULTS: Eleven participants completed the online survey. A total of ten participants attended the two focus groups of 1-h duration: five participants in each. Participants reported feeling empowered to create unique, locally relevant and readily adaptable community-wide change. They were supported by a strong partnership that mobilised funding for a part-time health promotion employee. Strengthened social connections were an unexpected though highly valued outcome. CONCLUSION: Co-creation processes may assist stakeholders in delivering prevention strategies in ways that are empowering for them, responsive to the changing needs of the community, strengthen organisational partnerships and enhance community participation, social inclusion and engagement.


Assuntos
Saúde da Criança , Promoção da Saúde , Criança , Humanos , Austrália/epidemiologia , Obesidade , Participação da Comunidade
14.
J Sociol (Melb) ; 59(2): 580-599, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37168608

RESUMO

Societies often respond to a crisis by attributing blame to some groups while constructing others as victims and heroes. While it has received scant sociological attention, 'panic buying' is a critical indicator of such public sentiment at the onset of a crisis, and thus a crucial site for analysis. This article traces dynamics of blame in news media representations of an extreme period of panic buying during COVID-19 in Australia. Analysis reveals that lower socio-economic and ethnically diverse consumers were blamed disproportionately. Unlike wealthier consumers who bulk-bought online, shoppers filling trollies in-store were depicted as selfish and shameful, described using dehumanising language, and portrayed as 'villains' who threatened social order. Supermarkets were cast simultaneously as 'victims' of consumer aggression and 'heroes' for their moral leadership, trustworthiness and problem-solving. This portrayal misunderstands the socio-emotional drivers of panic buying, exacerbates stigma towards already disadvantaged groups, and veils the corporate profiteering that encourages stockpiling.

15.
Cell Mol Neurobiol ; 42(3): 521-532, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32876899

RESUMO

Mitochondrial fatty acid ß-oxidation disorders (FAODs) are a group of about 20 diseases which are caused by specific mutations in genes that codify proteins or enzymes involved in the fatty acid transport and mitochondrial ß-oxidation. As a consequence of these inherited metabolic defects, fatty acids can not be used as an appropriate energetic source during special conditions, such as prolonged fasting, exercise or other catabolic states. Therefore, patients usually present hepatopathy, cardiomyopathy, severe skeletal myopathy and neuropathy, besides biochemical features like hypoketotic hypoglycemia, metabolic acidosis, hypotony and hyperammonemia. This set of symptoms seems to be related not only with the energy deficiency, but also with toxic effects provoked by fatty acids and carnitine derivatives accumulated in the tissues of the patients. The understanding of the mechanisms by which these metabolites provoke tissue injury in FAODs is crucial for the developmental of novel therapeutic strategies that promote increased life expectancy, as well as improved life quality for patients. In this sense, the objective of this review is to present evidence from the scientific literature on the role of oxidative damage and mitochondrial dysfunction in the pathogenesis of the most prevalent FAODs: medium-chain acyl-CoA dehydrogenase (MCAD), long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiencies. It is expected that the findings presented in this review, obtained from both animal model and patients studies, may contribute to a better comprehension of the pathophysiology of these diseases.


Assuntos
Acidose , Erros Inatos do Metabolismo Lipídico , Doenças Musculares , Acidose/metabolismo , Animais , Ácidos Graxos , Humanos , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Mitocôndrias/metabolismo , Doenças Musculares/metabolismo , Oxirredução , Estresse Oxidativo
16.
Cell Mol Neurobiol ; 42(8): 2593-2610, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34665389

RESUMO

Ammonia is a neurotoxic compound which is detoxified through liver enzymes from urea cycle. Several inherited or acquired conditions can elevate ammonia concentrations in blood, causing severe damage to the central nervous system due to the toxic effects exerted by ammonia on the astrocytes. Therefore, hyperammonemic patients present potentially life-threatening neuropsychiatric symptoms, whose severity is related with the hyperammonemia magnitude and duration, as well as the brain maturation stage. Inherited metabolic diseases caused by enzymatic defects that compromise directly or indirectly the urea cycle activity are the main cause of hyperammonemia in the neonatal period. These diseases are mainly represented by the congenital defects of urea cycle, classical organic acidurias, and the defects of mitochondrial fatty acids oxidation, with hyperammonemia being more severe and frequent in the first two groups mentioned. An effective and rapid treatment of hyperammonemia is crucial to prevent irreversible neurological damage and it depends on the understanding of the pathophysiology of the diseases, as well as of the available therapeutic approaches. In this review, the mechanisms underlying the hyperammonemia and neurological dysfunction in urea cycle disorders, organic acidurias, and fatty acids oxidation defects, as well as the therapeutic strategies for the ammonia control will be discussed.


Assuntos
Hiperamonemia , Doenças Metabólicas , Amônia/metabolismo , Ácidos Graxos , Humanos , Hiperamonemia/complicações , Hiperamonemia/diagnóstico , Recém-Nascido , Ureia/metabolismo
17.
Arch Biochem Biophys ; 709: 108970, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34181873

RESUMO

Glutaric acidemia type 1 (GA1) is caused by glutaryl-CoA dehydrogenase deficiency that leads to a blockage in the metabolic route of the amino acids lysine and tryptophan and subsequent accumulation of glutaric acid (GA), 3-hydroxyglutaric acids and glutarylcarnitine (C5DC). Patients predominantly manifest neurological symptoms, associated with acute striatal degeneration, as well as progressive cortical and striatum injury whose pathogenesis is not yet fully established. Current treatment includes protein/lysine restriction and l-carnitine supplementation of (L-car). The aim of this work was to evaluate behavior parameters and pro-inflammatory factors (cytokines IL-1ß, TNF-α and cathepsin-D levels), as well as the anti-inflammatory cytokine IL10 in striatum of knockout mice (Gcdh-/-) and wild type (WT) mice submitted to a normal or a high Lys diet. The potential protective effects of L-car treatment on these parameters were also evaluated. Gcdh-/- mice showed behavioral changes, including lower motor activity (decreased number of crossings) and exploratory activity (reduced number of rearings). Also, Gcdh-/- mice had significantly higher concentrations of glutarylcarnitine (C5DC) in blood and cathepsin-D (CATD), interleukin IL-1ß and tumor factor necrosis alpha (TNF-α) in striatum than WT mice. Noteworthy, L-car treatment prevented most behavioral alterations, normalized CATD levels and attenuated IL-1ß levels in striatum of Gcdh-/- mice. Finally, IL-1ß was positively correlated with CATD and C5DC levels and L-car was negatively correlated with CATD. Our results demonstrate behavioral changes and a pro-inflammatory status in striatum of the animal model of GA1 and, most importantly, L-car showed important protective effects on these alterations.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Encefalopatias Metabólicas/tratamento farmacológico , Carnitina/uso terapêutico , Glutaril-CoA Desidrogenase/deficiência , Inflamação/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Animais , Encefalopatias Metabólicas/genética , Carnitina/análogos & derivados , Carnitina/metabolismo , Catepsina D/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Glutaril-CoA Desidrogenase/genética , Asseio Animal/efeitos dos fármacos , Inflamação/genética , Interleucina-1beta/metabolismo , Locomoção/efeitos dos fármacos , Lisina/farmacologia , Camundongos Knockout , Teste de Campo Aberto/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
18.
Metab Brain Dis ; 36(2): 205-212, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064266

RESUMO

Glutaric aciduria type 1 (GA-1) is a rare but treatable inherited disease caused by deficiency of glutaryl-CoA dehydrogenase activity due to GCDH gene mutations. In this study, we report 24 symptomatic GA-1 Brazilian patients, and present their clinical, biochemical, and molecular findings. Patients were diagnosed by high levels of glutaric and/or 3-hydroxyglutaric and glutarylcarnitine. Diagnosis was confirmed by genetic analysis. Most patients had the early-onset severe form of the disease and the main features were neurological deterioration, seizures and dystonia, usually following an episode of metabolic decompensation. Despite the early symptomatology, diagnosis took a long time for most patients. We identified 13 variants in the GCDH gene, four of them were novel: c.91 + 5G > A, c.167T > G, c.257C > T, and c.10A > T. The most common mutation was c.1204C > T (p.R402W). Surprisingly, the second most frequent mutation was the new mutation c.91 + 5G > A (IVS1 ds G-A + 5). Our results allowed a complete characterization of the GA-1 Brazilian patients. Besides, they expand the mutational spectrum of GA-1, with the description of four new mutations. This work reinforces the importance of awareness of GA-1 among doctors in order to allow early diagnosis and treatment in countries like Brazil where the disease has not been included in newborn screening programs.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Encefalopatias Metabólicas/diagnóstico , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Mutação , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/genética , Brasil , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
19.
Metab Brain Dis ; 36(7): 1957-1968, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216350

RESUMO

Although phenylalanine (Phe) is known to be neurotoxic in phenylketonuria (PKU), its exact pathogenetic mechanisms of brain damage are still poorly known. Furthermore, much less is known about the role of the Phe derivatives phenylacetic (PAA), phenyllactic (PLA) and phenylpyruvic (PPA) acids that also accumulate in this this disorder on PKU neuropathology. Previous in vitro and in vivo studies have shown that Phe elicits oxidative stress in brain of rodents and that this deleterious process also occurs in peripheral tissues of phenylketonuric patients. In the present study, we investigated whether Phe and its derivatives PAA, PLA and PPA separately or in combination could induce reactive oxygen species (ROS) formation and provoke DNA damage in C6 glial cells. We also tested the role of L-carnitine (L-car), which has been recently considered an antioxidant agent and easily cross the blood brain barrier on the alterations of C6 redox status provoked by Phe and its metabolites. We first observed that cell viability was not changed by Phe and its metabolites. Furthermore, Phe, PAA, PLA and PPA, at concentrations found in plasma of PKU patients, provoked marked DNA damage in the glial cells separately and when combined. Of note, these effects were totally prevented (Phe, PAA and PPA) or attenuated (PLA) by L-car pre-treatment. In addition, a potent ROS formation also induced by Phe and PAA, whereas only moderate increases of ROS were caused by PPA and PLA. Pre-treatment with L-car also prevented Phe- and PAA-induced ROS generation, but not that provoked by PLA and PPA. Thus, our data show that Phe and its major metabolites accumulated in PKU provoke extensive DNA damage in glial cells probably by ROS formation and that L-car may potentially represent an adjuvant therapeutic agent in PKU treatment.


Assuntos
Lesões Encefálicas , Fenilcetonúrias , Lesões Encefálicas/tratamento farmacológico , Carnitina/farmacologia , Carnitina/uso terapêutico , Humanos , Cetoácidos/farmacologia , Estresse Oxidativo , Fenilalanina/farmacologia , Fenilalanina/uso terapêutico
20.
Metab Brain Dis ; 36(5): 1015-1027, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33620579

RESUMO

Maple syrup urine disease (MSUD) is a genetic disorder that leads the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine, valine and metabolites. The symptomatology includes psychomotor delay and mental retardation. MSUD therapy comprises a lifelong protein strict diet with low BCAA levels and is well established that high concentrations of Leu and/or its ketoacid are associated with neurological symptoms. Recently, it was demonstrated that the phenylbutyrate (PBA) have the ability to decrease BCAA concentrations. This work aimed the development of lipid-based nanoparticles loaded with PBA, capable of targeting to the central nervous system in order to verify its action mechanisms on oxidative stress and cell death in brain of rats subjected to a MSUD chronic model. PBA-loaded nanoparticles treatment was effective in significantly decreasing BCAA concentration in plasma and Leu in the cerebral cortex of MSUD animals. Furthermore, PBA modulate the activity of catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase enzymes, as well as preventing the oxidative damage to lipid membranes and proteins. PBA was also able to decrease the glial fibrillary acidic protein concentrations and partially decreased the reactive species production and caspase-3 activity in MSUD rats. Taken together, the data indicate that the PBA-loaded nanoparticles could be an efficient adjuvant in the MSUD therapy, protecting against oxidative brain damage and neuroinflammation.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Córtex Cerebral/efeitos dos fármacos , Doença da Urina de Xarope de Bordo/metabolismo , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Fenilbutiratos/administração & dosagem , Animais , Catalase/metabolismo , Córtex Cerebral/metabolismo , Glutationa Peroxidase/metabolismo , Doença da Urina de Xarope de Bordo/sangue , Doença da Urina de Xarope de Bordo/induzido quimicamente , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa