RESUMO
B2nep2 efficiently promotes the N-O cleavage of nitrones to form imines in very high yields via a simple, efficient, sustainable, functional group tolerant and scalable protocol. The reaction occurs in the absence of additives through a concerted mechanism. We demonstrated that DMPO and TEMPO, typically used as radical traps, are also deoxygenated by diboron reagents, which demonstrates their limitation as mechanistic probes.
RESUMO
We have proven that pyridine-boryl complexes can be used as superelectron donors to promote the coupling of thiols and aromatic halides through a SRN1 mechanism. The reaction is efficient for a broad substrate scope, tolerating heterocycles including pyridines, enolizable or reducible functional groups. The method has been applied to intermediates in drug synthesis as well as interesting functionalized polythioethers through a controlled and consecutive intramolecular electron transfer process.
RESUMO
Inspired by the ability of enzymes to use the surrounding hydrophobic and/or polarizable groups to modulate the pKa of a given amino acid, we designed a series of soluble polymers able to decrease the basicity of pyrrolidine (from 11.2 to 8.6 pKa units), which clearly increases its aminocatalytic activity at physiological pH in CâN bond formation reactions via ion iminium activation. Other parameters such as charge density, hydrophobic/hydrophilic balance, and aggregation state have been studied as important factors in the catalytic activity of the polymers for a given substrate. To demonstrate the utility of our approach, an optimal pyrrolidine-based catalytic polymer has been used for the formation of C-N bonds between hydrazides and free sugars as the model system for the preparation of glycoconjugates.