RESUMO
Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which mediates the effects of a variety of environmental stimuli in multiple tissues. Recent advances in AHR biology have underlined its importance in cells with high developmental potency, including pluripotent stem cells. Nonetheless, there is little data on AHR expression and its role during the initial stages of stem cell differentiation. The purpose of this study was to investigate the temporal pattern of AHR expression during directed differentiation of human embryonic stem cells (hESC) into neural progenitor, early mesoderm and definitive endoderm cells. Additionally, we investigated the effect of the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the gene expression profile in hESCs and differentiated cells by RNA-seq, accompanied by identification of AHR binding sites by ChIP-seq and epigenetic landscape analysis by ATAC-seq. We showed that AHR is differentially regulated in distinct lineages. We provided evidence that TCDD alters gene expression patterns in hESCs and during early differentiation. Additionally, we identified novel potential AHR target genes, which expand our understanding on the role of this protein in different cell types.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/citologia , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Biomarcadores , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Corpos Embrioides/citologia , Corpos Embrioides/efeitos dos fármacos , Genoma Humano , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , LigantesRESUMO
The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor primarily known for its toxicological functions. Recent studies have established its importance in many physiological processes including female reproduction, although there is limited data about the precise mechanisms how Ahr itself is regulated during ovarian follicle maturation. This study describes the expression of Ahr in ovarian granulosa cells (GCs) of immature mice in a gonadotropin-dependent manner. We show that Ahr upregulation in vivo requires both follicle stimulating hormone (FSH) and luteinizing hormone (LH) activities. FSH alone increased Ahr mRNA, but had no effect on Ahr protein level, implicating a possible LH-dependent post-transcriptional regulation. Also, the increase in Ahr protein is specific to large antral follicles in induced follicle maturation. We show that Ahr expression in GCs of mid-phase follicular maturation is downregulated by protein kinase A (PKA) signaling and activation of Ahr promoter is regulated by chromatin remodeling.
Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epigênese Genética , Hormônio Foliculoestimulante/metabolismo , Regulação da Expressão Gênica , Células da Granulosa/metabolismo , Hormônio Luteinizante/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Cromatina/genética , Cromatina/metabolismo , Feminino , Camundongos , Folículo Ovariano/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Transcrição GênicaRESUMO
The plasticizer di(2-ethylhexyl) phthalate (DEHP) is known to have endocrine-disrupting properties mediated by its many metabolites that form upon exposure in biological systems. In a previous study, we reported an inverse association between DEHP metabolites in the human ovarian follicular fluid (FF) and the responsiveness of the follicles to controlled ovarian stimulation during in vitro fertilization (IVF) treatments. Here, we explored this association further through molecular analysis of the ovarian FF samples. Ninety-six IVF patients from Swedish (N = 48) and Estonian (N = 48) infertility clinics were selected from the previous cohort (N = 333) based on the molar sum of DEHP metabolites in their FF samples to arrive at "high" (mean 7.7 ± SD 2.3 nM, N = 48) and "low" (0.8 ± 0.4 nM, N = 48) exposure groups. Extracellular miRNA levels and concentrations of 15 steroid hormones were measured across FF samples. In addition, FF somatic cells, available for the Estonian patients, were used for RNA sequencing. Differential expression (DE) and interactions between miRNA and mRNA networks revealed that the expression levels of genes in the cholesterol biosynthesis and steroidogenesis pathways were significantly decreased in the high compared to the low DEHP group. In addition, the DE miRNAs were predicted to target key enzymes within these pathways (FDR < 0.05). A decreased 17-OH-progesterone to progesterone ratio was observed in the FF of the high DEHP group (p < 0.05). Additionally, the expression levels of genes associated with inflammatory processes were elevated in the FF somatic cells, and a computational cell-type deconvolution analysis suggested an increased immune cell infiltration into the high DEHP follicles (p < 0.05). In conclusion, elevated DEHP levels in FF were associated with a significantly altered follicular milieu within human ovaries, involving a pro-inflammatory environment and reduced cholesterol metabolism, including steroid synthesis. These results contribute to our understanding of the molecular mechanisms of female reprotoxic effects of DEHP.
Assuntos
Colesterol , Dietilexilftalato , Líquido Folicular , Inflamação , Humanos , Feminino , Líquido Folicular/metabolismo , Dietilexilftalato/metabolismo , Adulto , Colesterol/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Estônia , Plastificantes , Esteroides/metabolismo , Suécia , Folículo Ovariano/metabolismo , Ovário/metabolismo , Fertilização in vitro , MicroRNAs/metabolismo , MicroRNAs/genéticaRESUMO
Soil microbiome has a pivotal role in ecosystem functioning, yet little is known about its build-up from local to regional scales. In a multi-year regional-scale survey involving 1251 plots and long-read third-generation sequencing, we found that soil pH has the strongest effect on the diversity of fungi and its multiple taxonomic and functional groups. The pH effects were typically unimodal, usually both direct and indirect through tree species, soil nutrients or mold abundance. Individual tree species, particularly Pinus sylvestris, Picea abies, and Populus x wettsteinii, and overall ectomycorrhizal plant proportion had relatively stronger effects on the diversity of biotrophic fungi than saprotrophic fungi. We found strong temporal sampling and investigator biases for the abundance of molds, but generally all spatial, temporal and microclimatic effects were weak. Richness of fungi and several functional groups was highest in woodlands and around ruins of buildings but lowest in bogs, with marked group-specific trends. In contrast to our expectations, diversity of soil fungi tended to be higher in forest island habitats potentially due to the edge effect, but fungal richness declined with island distance and in response to forest fragmentation. Virgin forests supported somewhat higher fungal diversity than old non-pristine forests, but there were no differences in richness between natural and anthropogenic habitats such as parks and coppiced gardens. Diversity of most fungal groups suffered from management of seminatural woodlands and parks and thinning of forests, but especially for forests the results depended on fungal group and time since partial harvesting. We conclude that the positive effects of tree diversity on overall fungal richness represent a combined niche effect of soil properties and intimate associations.