RESUMO
Life builds its molecules from carbon dioxide (CO2) and breaks them back down again through the intermediacy of just five metabolites, which are the universal hubs of biochemistry1. However, it is unclear how core biological metabolism began and why it uses the intermediates, reactions and pathways that it does. Here we describe a purely chemical reaction network promoted by ferrous iron, in which aqueous pyruvate and glyoxylate-two products of abiotic CO2 reduction2-4-build up 9 of the 11 intermediates of the biological Krebs (or tricarboxylic acid) cycle, including all 5 universal metabolic precursors. The intermediates simultaneously break down to CO2 in a life-like regime that resembles biological anabolism and catabolism5. Adding hydroxylamine6-8 and metallic iron into the system produces four biological amino acids in a manner that parallels biosynthesis. The observed network overlaps substantially with the Krebs and glyoxylate cycles9,10, and may represent a prebiotic precursor to these core metabolic pathways.
Assuntos
Compostos Ferrosos/metabolismo , Ferro/metabolismo , Redes e Vias Metabólicas , Dióxido de Carbono/metabolismo , Ciclo do Ácido Cítrico , Glioxilatos/metabolismo , Hidroxilamina/metabolismo , Ácido Pirúvico/metabolismoRESUMO
The structure of the metabolic network is highly conserved, but we know little about its evolutionary origins. Key for explaining the early evolution of metabolism is solving a chicken-egg dilemma, which describes that enzymes are made from the very same molecules they produce. The recent discovery of several nonenzymatic reaction sequences that topologically resemble central metabolism has provided experimental support for a "metabolism first" theory, in which at least part of the extant metabolic network emerged on the basis of nonenzymatic reactions. But how could evolution kick-start on the basis of a metal catalyzed reaction sequence, and how could the structure of nonenzymatic reaction sequences be imprinted on the metabolic network to remain conserved for billions of years? We performed an in vitro screening where we add the simplest components of metabolic enzymes, proteinogenic amino acids, to a nonenzymatic, iron-driven reaction network that resembles glycolysis and the pentose phosphate pathway (PPP). We observe that the presence of the amino acids enhanced several of the nonenzymatic reactions. Particular attention was triggered by a reaction that resembles a rate-limiting step in the oxidative PPP. A prebiotically available, proteinogenic amino acid cysteine accelerated the formation of RNA nucleoside precursor ribose-5-phosphate from 6-phosphogluconate. We report that iron and cysteine interact and have additive effects on the reaction rate so that ribose-5-phosphate forms at high specificity under mild, metabolism typical temperature and environmental conditions. We speculate that accelerating effects of amino acids on rate-limiting nonenzymatic reactions could have facilitated a stepwise enzymatization of nonenzymatic reaction sequences, imprinting their structure on the evolving metabolic network.
Assuntos
Cisteína/metabolismo , Ferro/metabolismo , Ribosemonofosfatos/metabolismo , Aminoácidos/metabolismo , Catálise , Cisteína/química , Evolução Molecular , Glucose/metabolismo , Glicólise/fisiologia , Ferro/química , Espectroscopia de Ressonância Magnética/métodos , Redes e Vias Metabólicas/fisiologia , Origem da Vida , Via de Pentose Fosfato/genética , Via de Pentose Fosfato/fisiologiaRESUMO
Prebiotic chemistry aims to explain how the biochemistry of life as we know it came to be. Most efforts in this area have focused on provisioning compounds of importance to life by multistep synthetic routes that do not resemble biochemistry. However, gaining insight into why core metabolism uses the molecules, reactions, pathways, and overall organization that it does requires us to consider molecules not only as synthetic end goals. Equally important are the dynamic processes that build them up and break them down. This perspective has led many researchers to the hypothesis that the first stage of the origin of life began with the onset of a primitive nonenzymatic version of metabolism, initially catalyzed by naturally occurring minerals and metal ions. This view of life's origins has come to be known as "metabolism first". Continuity with modern metabolism would require a primitive version of metabolism to build and break down ketoacids, sugars, amino acids, and ribonucleotides in much the same way as the pathways that do it today. This review discusses metabolic pathways of relevance to the origin of life in a manner accessible to chemists, and summarizes experiments suggesting several pathways might have their roots in prebiotic chemistry. Finally, key remaining milestones for the protometabolic hypothesis are highlighted.
Assuntos
Aminoácidos/metabolismo , Origem da Vida , Ribonucleotídeos/metabolismo , Açúcares/metabolismo , Aminoácidos/biossíntese , Aminoácidos/genética , Metabolismo dos Carboidratos , Código Genético , Redes e Vias Metabólicas , Ribonucleotídeos/biossínteseRESUMO
Copper-catalyzed reaction of enynamines with sulfonylazides provides acyclic and cyclic amidines. Nucleophilic addition of the tethered amino group on the in situ generated ketenimine forms a six-membered cyclic zwitterionic intermediate which facilitates migration of the tethered amino group to the C5-center giving the acyclic amidine. On the other hand, migration of a substituent on the amino group to C2- and C4-centers results in the formation of cyclic amidines. Computational studies were carried out to validate the mechanism which indicates that the product distribution of the process depends on the substitutions on the enynamine backbone.
RESUMO
The ground-state deprotection of a simple alkynylsilane is studied under vibrational strong coupling to the zero-point fluctuations, or vacuum electromagnetic field, of a resonant IR microfluidic cavity. The reaction rate decreased by a factor of up to 5.5 when the Si-C vibrational stretching modes of the reactant were strongly coupled. The relative change in the reaction rate under strong coupling depends on the Rabi splitting energy. Product analysis by GC-MS confirmed the kinetic results. Temperature dependence shows that the activation enthalpy and entropy change significantly, suggesting that the transition state is modified from an associative to a dissociative type. These findings show that vibrational strong coupling provides a powerful approach for modifying and controlling chemical landscapes and for understanding reaction mechanisms.
RESUMO
Hydrogen gas, H2, is generated by alkaline hydrothermal vents through an ancient geochemical process called serpentinization, in which water reacts with iron-containing minerals deep within the Earth's crust. H2 is the electron donor for the most ancient and the only energy-releasing route of biological CO2 fixation, the acetyl-CoA pathway. At the origin of metabolism, CO2 fixation by hydrothermal H2 within serpentinizing systems could have preceded and patterned biotic pathways. Here we show that three hydrothermal minerals-greigite (Fe3S4), magnetite (Fe3O4) and awaruite (Ni3Fe)-catalyse the fixation of CO2 with H2 at 100 °C under alkaline aqueous conditions. The product spectrum includes formate (up to 200 mM), acetate (up to 100 µM), pyruvate (up to 10 µM), methanol (up to 100 µM) and methane. The results shed light on both the geochemical origin of microbial metabolism and the nature of abiotic formate and methane synthesis in modern hydrothermal vents.
Assuntos
Hidrogênio , Fontes Hidrotermais , Carbono , Dióxido de Carbono , Metabolismo EnergéticoRESUMO
Autotrophic theories for the origin of life propose that CO2 was the carbon source for primordial biosynthesis. Among the six known CO2 fixation pathways in nature, the acetyl-CoA (AcCoA; or Wood-Ljungdahl) pathway is the most ancient, and relies on transition metals for catalysis. Modern microbes that use the AcCoA pathway typically fix CO2 with electrons from H2, which requires complex flavin-based electron bifurcation. This presents a paradox: how could primitive metabolic systems have fixed CO2 before the origin of proteins? Here, we show that native transition metals (Fe0, Ni0 and Co0) selectively reduce CO2 to acetate and pyruvate-the intermediates and end-products of the AcCoA pathway-in near millimolar concentrations in water over hours to days using 1-40 bar CO2 and at temperatures from 30 to 100 °C. Geochemical CO2 fixation from native metals could have supplied critical C2 and C3 metabolites before the emergence of enzymes.
Assuntos
Acetilcoenzima A/química , Dióxido de Carbono/química , Ferro/química , OxirreduçãoRESUMO
The reverse tricarboxylic acid (rTCA) cycle (also known as the reverse Krebs cycle) is a central anabolic biochemical pathway whose origins are proposed to trace back to geochemistry, long before the advent of enzymes, RNA or cells, and whose imprint remains intimately embedded in the structure of core metabolism. If it existed, a primordial version of the rTCA cycle would necessarily have been catalysed by naturally occurring minerals at the earliest stage of the transition from geochemistry to biochemistry. Here, we report non-enzymatic promotion of multiple reactions of the rTCA cycle in consecutive sequence, whereby 6 of its 11 reactions were promoted by Zn2+, Cr3+ and Fe0 in an acidic aqueous solution. Two distinct three-reaction sequences were achieved under a common set of conditions. Selectivity was observed for reduction reactions producing rTCA cycle intermediates compared with those leading off-cycle. Reductive amination of ketoacids to furnish amino acids was observed under similar conditions. The emerging reaction network supports the feasibility of primitive anabolism in an acidic, metal-rich reducing environment.