RESUMO
RATIONALE: Hereditary hemorrhagic telangiectasia (HHT) is a genetic disease caused by mutations in ENG, ALK1, or SMAD4. Since proteins from all 3 HHT genes are components of signal transduction of TGF-ß (transforming growth factor ß) family members, it has been hypothesized that HHT is a disease caused by defects in the ENG-ALK1-SMAD4 linear signaling. However, in vivo evidence supporting this hypothesis is scarce. OBJECTIVE: We tested this hypothesis and investigated the therapeutic effects and potential risks of induced-ALK1 or -ENG overexpression (OE) for HHT. METHODS AND RESULTS: We generated a novel mouse allele (ROSA26Alk1) in which HA (human influenza hemagglutinin)-tagged ALK1 and bicistronic eGFP expression are induced by Cre activity. We examined whether ALK1-OE using the ROSA26Alk1 allele could suppress the development of arteriovenous malformations (AVMs) in wounded adult skin and developing retinas of Alk1- and Eng-inducible knockout (iKO) mice. We also used a similar approach to investigate whether ENG-OE could rescue AVMs. Biochemical and immunofluorescence analyses confirmed the Cre-dependent OE of the ALK1-HA transgene. We could not detect any pathological signs in ALK1-OE mice up to 3 months after induction. ALK1-OE prevented the development of retinal AVMs and wound-induced skin AVMs in Eng-iKO as well as Alk1-iKO mice. ALK1-OE normalized expression of SMAD and NOTCH target genes in ENG-deficient endothelial cells (ECs) and restored the effect of BMP9 (bone morphogenetic protein 9) on suppression of phosphor-AKT levels in these endothelial cells. On the other hand, ENG-OE could not inhibit the AVM development in Alk1-iKO models. CONCLUSIONS: These data support the notion that ENG and ALK1 form a linear signaling pathway for the formation of a proper arteriovenous network during angiogenesis. We suggest that ALK1 OE or activation can be an effective therapeutic strategy for HHT. Further research is required to study whether this therapy could be translated into treatment for humans.
Assuntos
Receptores de Activinas Tipo II/metabolismo , Malformações Arteriovenosas/prevenção & controle , Células Endoteliais/metabolismo , Telangiectasia Hemorrágica Hereditária/metabolismo , Receptores de Activinas Tipo II/deficiência , Receptores de Activinas Tipo II/genética , Alelos , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Malformações Arteriovenosas/genética , Modelos Animais de Doenças , Endoglina/deficiência , Endoglina/genética , Endoglina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , RNA não Traduzido , Receptores Notch/genética , Receptores Notch/metabolismo , Vasos Retinianos/anormalidades , Transdução de Sinais , Pele/irrigação sanguínea , Pele/lesões , Proteína Smad4/genética , Proteína Smad4/metabolismo , Telangiectasia Hemorrágica Hereditária/genética , Fator de Crescimento Transformador betaRESUMO
OBJECTIVE: Perivascular adipose tissue (PVAT) surrounding arteries supports healthy vascular function. During obesity, PVAT loses its vasoprotective effect. We study pathological conversion of PVAT, which involves molecular changes in protein profiles and functional changes in adipocytes. Approach and Results: C57BL6/J mice were fed a 60% high-fat diet for 12 weeks or a cardioprotective 30% calorie-restricted diet for 5 weeks. Proteomic analysis identified PVAT as a molecularly distinct adipose depot, and novel markers for thermogenic adipocytes, such as GRP75 (stress-70 protein, mitochondrial), were identified. High-fat diet increased the similarity of protein signatures in PVAT and brown adipose, suggesting activation of a conserved whitening pathway. The whitening phenotype was characterized by suppression of UCP1 (uncoupling protein 1) and increased lipid deposition, leptin, and inflammation, and specifically in PVAT, elevated Notch signaling. Conversely, PVAT from calorie-restricted mice had decreased Notch signaling and less lipid. Using the Adipoq-Cre strain, we constitutively activated Notch1 signaling in adipocytes, which phenocopied the changes in PVAT caused by a high-fat diet, even on a standard diet. Preadipocytes from mouse PVAT expressed Sca1, CD140a, Notch1, and Notch2, but not CD105, showing differences compared with preadipocytes from other depots. Inhibition of Notch signaling during differentiation of PVAT-derived preadipocytes reduced lipid deposition and adipocyte marker expression. CONCLUSIONS: PVAT shares features with other adipose depots, but has a unique protein signature that is regulated by dietary stress. Increased Notch signaling in PVAT is sufficient to initiate the pathological conversion of PVAT by promoting adipogenesis and lipid accumulation and may thus prime the microenvironment for vascular disease.
Assuntos
Adipócitos Brancos/metabolismo , Adipogenia , Tecido Adiposo Branco/metabolismo , Lipogênese , Obesidade/metabolismo , Receptores Notch/metabolismo , Adipócitos Brancos/patologia , Tecido Adiposo Branco/patologia , Adiposidade , Animais , Ataxina-1/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Restrição Calórica , Dieta Hiperlipídica , Modelos Animais de Doenças , Endoglina/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Obesidade/patologia , Fenótipo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Proteômica , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Notch/genética , Transdução de SinaisRESUMO
Atypical antipsychotic (AA) medications including risperidone (RIS) and olanzapine (OLAN) are FDA approved for the treatment of psychiatric disorders including schizophrenia, bipolar disorder and depression. Clinical side effects of AA medications include obesity, insulin resistance, dyslipidemia, hypertension and increased cardiovascular disease risk. Despite the known pharmacology of these AA medications, the mechanisms contributing to adverse metabolic side-effects are not well understood. To evaluate drug-associated effects on the heart, we assessed changes in the cardiac proteomic signature in mice administered for 4 weeks with clinically relevant exposure of RIS or OLAN. Using proteomic and gene enrichment analysis, we identified differentially expressed (DE) proteins in both RIS- and OLAN-treated mouse hearts (p < 0.05), including proteins comprising mitochondrial respiratory complex I and pathways involved in mitochondrial function and oxidative phosphorylation. A subset of DE proteins identified were further validated by both western blotting and quantitative real-time PCR. Histological evaluation of hearts indicated that AA-associated aberrant cardiac gene expression occurs prior to the onset of gross pathomorphological changes. Additionally, RIS treatment altered cardiac mitochondrial oxygen consumption and whole body energy expenditure. Our study provides insight into the mechanisms underlying increased patient risk for adverse cardiac outcomes with chronic treatment of AA medications.
Assuntos
Antipsicóticos/farmacologia , Miocárdio/metabolismo , Risperidona/farmacologia , Animais , Ácidos Graxos não Esterificados/sangue , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Risco de Doenças Cardíacas , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Olanzapina/farmacologia , Consumo de Oxigênio , ProteômicaRESUMO
Patients with severe mental illness have increased mortality, often linked to cardio-metabolic disease. Non-alcoholic fatty liver disease (NAFLD) incidence is higher in patients with schizophrenia and is exacerbated with antipsychotic treatment. NAFLD is associated with obesity and insulin resistance, both of which are induced by several antipsychotic medications. NAFLD is considered an independent risk factor for cardiovascular disease, the leading cause of death for patients with severe mental illness. Although the clinical literature clearly defines increased risk of NAFLD with antipsychotic therapy, the underlying mechanisms are not understood. Given the complexity of the disorder as well as the complex pharmacology associated with atypical antipsychotic (AA) medications, we chose to use a proteomic approach in healthy mice treated with a low dose of risperidone (RIS) or olanzapine (OLAN) for 28 days to determine effects on development of NAFLD and to identify pathways impacted by AA medications, while removing confounding intrinsic effects of mental illness. Both AA drugs caused development of steatosis in comparison with vehicle controls (p < 0.01) and affected multiple pathways relating to energy metabolism, NAFLD, and immune function. AA-associated alteration in autonomic function appears to be a unifying theme in the regulation of hepatic pathology.
Assuntos
Antipsicóticos/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Olanzapina/toxicidade , Proteoma/metabolismo , Risperidona/toxicidade , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/etiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Proteoma/genéticaRESUMO
Atherosclerosis is the most common cause of heart disease and stroke. The use of animal models has advanced our understanding of the molecular signaling that contributes to atherosclerosis. Further understanding of this degenerative process in humans will require human tissue. Plaque removed during endarterectomy procedures to relieve arterial obstructions is usually discarded, but can be an important source of diseased cells. Resected tissue from carotid and femoral endarterectomy procedures were compared with carotid arteries from donors with no known cardiovascular disease. Vascular smooth muscle cells (SMC) contribute to plaque formation and may determine susceptibility to rupture. Notch signaling is implicated in the progression of atherosclerosis, and plays a receptor-specific regulatory role in SMC. We defined protein localization of Notch2 and Notch3 within medial and plaque SMC using immunostaining, and compared Notch2 and Notch3 levels in total plaques with whole normal arteries using immunoblot. We successfully derived SMC populations from multiple endarterectomy specimens for molecular analysis. To better define the protein signature of diseased SMC, we utilized sequential window acquisition of all theoretical spectra (SWATH) proteomic analysis to compare normal carotid artery SMC with endarterectomy-derived SMC. Similarities in protein profile and differentiation markers validated the SMC identity of our explants. We identified a subset of differentially expressed proteins that are candidates as functional markers of diseased SMC. To understand how Notch signaling may affect diseased SMC, we performed Jagged1 stimulation of primary cultures. In populations that displayed significant growth, Jagged1 signaling through Notch2 suppressed proliferation; cultures with low growth potential were non-responsive to Jagged1. In addition, Jagged1 did not promote contractile smooth muscle actin nor have a significant effect on the mature differentiated phenotype. Thus, SMC derived from atherosclerotic lesions show distinct proteomic profiles and have altered Notch signaling in response to Jagged1 as a differentiation stimulus, compared with normal SMC.
Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Receptores Notch/metabolismo , Idoso , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Proliferação de Células , Células Cultivadas , Endarterectomia , Feminino , Humanos , Imuno-Histoquímica , Proteína Jagged-1/metabolismo , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Receptor Notch2/metabolismo , Receptor Notch3/metabolismo , Transdução de SinaisRESUMO
Stromal components not only help form the structure of neoplasms such as melanomas, but they also functionally contribute to their malignant phenotype. Thus, uncovering signaling pathways that integrate the behavior of both tumor and stromal cells may provide unique opportunities for the development of more effective strategies to control tumor progression. In this regard, extracellular matrix-mediated signaling plays a role in coordinating the behavior of both tumor and stromal cells. Here, evidence is provided that targeting a cryptic region of the extracellular matrix protein collagen (HU177 epitope) inhibits melanoma tumor growth and metastasis and reduces angiogenesis and the accumulation of α-SMA-expressing stromal cell in these tumors. The current study suggests that the ability of the HU177 epitope to control melanoma cell migration and metastasis depends on the transcriptional coactivator Yes-associated protein (YAP). Melanoma cell interactions with the HU177 epitope promoted nuclear accumulation of YAP by a cyclin-dependent kinase-5-associated mechanism. These findings provide new insights into the mechanism by which the anti-HU177 antibody inhibits metastasis, and uncovers an unknown signaling pathway by which the HU177 epitope selectively reprograms melanoma cells by regulating nuclear localization of YAP. This study helps to define a potential new therapeutic strategy to control melanoma tumor growth and metastasis that might be used alone or in combination with other therapeutics.
Assuntos
Movimento Celular/efeitos dos fármacos , Colágeno/fisiologia , Epitopos/fisiologia , Melanoma/fisiopatologia , Neoplasias Cutâneas/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Inibidores da Angiogênese/farmacologia , Anticorpos Anti-Idiotípicos/farmacologia , Anticorpos Anti-Idiotípicos/fisiologia , Proliferação de Células/fisiologia , Colágeno/imunologia , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/metabolismo , Humanos , Melanoma/patologia , Metástase Neoplásica , Neovascularização Patológica/imunologia , Fosfoproteínas/metabolismo , Fosforilação/fisiologia , Neoplasias Cutâneas/patologia , Células Estromais/fisiologia , Talina/metabolismo , Fatores de Transcrição , Células Tumorais Cultivadas , Proteínas de Sinalização YAPRESUMO
OBJECTIVE: Vascular remodeling is associated with complex molecular changes, including increased Notch2, which promotes quiescence in human smooth muscle cells. We used unbiased protein profiling to understand molecular signatures related to neointimal lesion formation in the presence or absence of Notch2 and to test the hypothesis that loss of Notch2 would increase neointimal lesion formation because of a hyperproliferative injury response. APPROACH AND RESULTS: Murine carotid arteries isolated at 6 or 14 days after ligation injury were analyzed by mass spectrometry using a data-independent acquisition strategy in comparison to uninjured or sham injured arteries. We used a tamoxifen-inducible, cell-specific Cre recombinase strain to delete the Notch2 gene in smooth muscle cells. Vessel morphometric analysis and immunohistochemical staining were used to characterize lesion formation, assess vascular smooth muscle cell proliferation, and validate proteomic findings. Loss of Notch2 in smooth muscle cells leads to protein profile changes in the vessel wall during remodeling but does not alter overall lesion morphology or cell proliferation. Loss of smooth muscle Notch2 also decreases the expression of enhancer of rudimentary homolog, plectin, and annexin A2 in vascular remodeling. CONCLUSIONS: We identified unique protein signatures that represent temporal changes in the vessel wall during neointimal lesion formation in the presence and absence of Notch2. Overall lesion formation was not affected with loss of smooth muscle Notch2, suggesting compensatory pathways. We also validated the regulation of known injury- or Notch-related targets identified in other vascular contexts, providing additional insight into conserved pathways involved in vascular remodeling.
Assuntos
Lesões das Artérias Carótidas/metabolismo , Espectrometria de Massas , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima , Proteômica/métodos , Receptor Notch2/metabolismo , Remodelação Vascular , Idoso , Idoso de 80 Anos ou mais , Animais , Anexina A2/metabolismo , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/patologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Plectina/metabolismo , Receptor Notch2/deficiência , Receptor Notch2/genética , Transdução de Sinais , Fatores de Transcrição/metabolismoRESUMO
The adult human heart contains a subpopulation of highly proliferative cells. The role of ErbB receptors in these cells has not been studied. From human left ventricular (LV) epicardial biopsies, we isolated highly proliferative cells (eHiPC) to characterize the cell surface expression and function of ErbB receptors in the regulation of cell proliferation and phenotype. We found that human LV eHiPC express all four ErbB receptor subtypes. However, the expression of ErbB receptors varied widely among eHiPC isolated from different subjects. eHiPC with higher cell surface expression of ErbB2 reproduced the phenotype of endothelial cells and were characterized by endothelial cell-like functional properties. We also found that EGF/ErbB1 induces VEGFR2 expression, while ligands for both ErbB1 and ErbB3/4 induce expression of Tie2. The number of CD31posCD45neg endothelial cells is higher in LV biopsies from subjects with high ErbB2 (ErbB2high) eHiPC compared to low ErbB2 (ErbB2low) eHiPC. These findings have important implications for potential strategies to increase the efficacy of cell-based revascularization of the injured heart, through promotion of an endothelial phenotype in cardiac highly proliferative cells.
Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Ventrículos do Coração/citologia , Pericárdio/citologia , Receptor ErbB-2/metabolismo , Animais , Biomarcadores/metabolismo , Biópsia , Contagem de Células , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Feminino , Humanos , Ligantes , Masculino , Pessoa de Meia-Idade , Fenótipo , Ratos , Transdução de Sinais , Regulação para CimaRESUMO
Evidence suggests that stromal cells play critical roles in tumor growth. Uncovering new mechanisms that control stromal cell behavior and their accumulation within tumors may lead to development of more effective treatments. We provide evidence that the HU177 cryptic collagen epitope is selectively generated within human ovarian carcinomas and this collagen epitope plays a role in SKOV-3 ovarian tumor growth in vivo. The ability of the HU177 epitope to regulate SKOV-3 tumor growth depends in part on its ability to modulate stromal cell behavior because targeting this epitope inhibited angiogenesis and, surprisingly, the accumulation of α-smooth muscle actin-expressing stromal cells. Integrin α10ß1 can serve as a receptor for the HU177 epitope in α-smooth muscle actin-expressing stromal cells and subsequently regulates Erk-dependent migration. These findings are consistent with a mechanism by which the generation of the HU177 collagen epitope provides a previously unrecognized α10ß1 ligand that selectively governs angiogenesis and the accumulation of stromal cells, which in turn secrete protumorigenic factors that contribute to ovarian tumor growth. Our findings provide a new mechanistic understanding into the roles by which the HU177 epitope regulates ovarian tumor growth and provide new insight into the clinical results from a phase 1 human clinical study of the monoclonal antibody D93/TRC093 in patients with advanced malignant tumors.
Assuntos
Proliferação de Células , Colágeno/metabolismo , Epitopos , Neoplasias Ovarianas/patologia , Microambiente Tumoral/fisiologia , Animais , Western Blotting , Adesão Celular/fisiologia , Proliferação de Células/fisiologia , Colágeno/química , Feminino , Xenoenxertos , Humanos , Camundongos , Neovascularização Patológica/metabolismo , Neoplasias Ovarianas/metabolismoRESUMO
Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MS(ALL) . Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-derived BAT-C1 cells were also characterized. Over 3000 unique lipid species were quantified. Principal component analysis showed that perirenal versus inguinal white adipose tissues varied in lipid composition of triacyl- and diacylglycerols, sphingomyelins, glycerophospholipids and, notably, cardiolipin CL 72:3. In contrast, hexosylceramides and sphingomyelins distinguished brown from white adipose. Adipocyte differentiation models showed broad differences in lipid composition among themselves, upon adipogenic differentiation, and with adipose tissues. Palmitoyl triacylglycerides predominate in 3T3-L1 differentiation models, whereas cardiolipin CL 72:1 and SM 45:4 were abundant in brown adipose-derived cell differentiation models, respectively. MS/MS(ALL) data suggest new lipid biomarkers for tissue-specific lipid contributions to adipogenesis, thus providing a foundation for using in vitro models of adipogenesis to reflect potential changes in adipose tissues in vivo. J. Cell. Biochem. 117: 2182-2193, 2016. © 2016 Wiley Periodicals, Inc.
Assuntos
Adipócitos Brancos/metabolismo , Adipogenia/fisiologia , Tecido Adiposo Branco/metabolismo , Metabolismo dos Lipídeos/fisiologia , Modelos Biológicos , Células 3T3-L1 , Adipócitos Brancos/citologia , Tecido Adiposo Branco/citologia , Animais , CamundongosRESUMO
OBJECTIVE: Bone morphogenetic protein-9 (BMP9)/activin-like kinase-1 and delta-like 4 (DLL4)/Notch promote endothelial quiescence, and we aim to understand mechanistic interactions between the 2 pathways. We identify new targets that contribute to endothelial quiescence and test whether loss of Dll4(+/-) in adult vasculature alters BMP signaling. APPROACH AND RESULTS: Human endothelial cells respond synergistically to BMP9 and DLL4 stimulation, showing complete quiescence and induction of HEY1 and HEY2. Canonical BMP9 signaling via activin-like kinase-1-Smad1/5/9 was disrupted by inhibition of Notch signaling, even in the absence of exogenous DLL4. Similarly, DLL4 activity was suppressed when the basal activin-like kinase-1-Smad1/5/9 pathway was inhibited, showing that these pathways are interdependent. BMP9/DLL4 required induction of P27(KIP1) for quiescence, although multiple factors are involved. To understand these mechanisms, we used proteomics data to identify upregulation of thrombospondin-1, which contributes to the quiescence phenotype. To test whether Dll4 regulates BMP/Smad pathways and endothelial cell phenotype in vivo, we characterized the vasculature of Dll4(+/-) mice, analyzing endothelial cells in the lung, heart, and aorta. Together with changes in endothelial structure and vascular morphogenesis, we found that loss of Dll4 was associated with a significant upregulation of pSmad1/5/9 signaling in lung endothelial cells. Because steady-state endothelial cell proliferation rates were not different in the Dll4(+/-) mice, we propose that the upregulation of pSmad1/5/9 signaling compensates to maintain endothelial cell quiescence in these mice. CONCLUSIONS: DLL4/Notch and BMP9/activin-like kinase-1 signaling rely on each other's pathways for full activity. This represents an important mechanism of cross talk that enhances endothelial quiescence and sensitively coordinates cellular responsiveness to soluble and cell-tethered ligands.
Assuntos
Senescência Celular , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células Endoteliais/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptor Notch1/metabolismo , Trombospondina 1/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Aorta/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação ao Cálcio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Vasos Coronários/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Genótipo , Fator 2 de Diferenciação de Crescimento , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pulmão/irrigação sanguínea , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Interferência de RNA , Receptor Notch1/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteínas Smad Reguladas por Receptor/genética , Proteínas Smad Reguladas por Receptor/metabolismo , Trombospondina 1/genética , TransfecçãoRESUMO
FGF1 is a nonclassically released growth factor that regulates carcinogenesis, angiogenesis, and inflammation. In vitro and in vivo, FGF1 export is stimulated by cell stress. Upon stress, FGF1 is transported to the plasma membrane where it localizes prior to transmembrane translocation. To determine which proteins participate in the submembrane localization of FGF1 and its export, we used immunoprecipitation mass spectrometry to identify novel proteins that associate with FGF1 during heat shock. The heat shock-dependent association of FGF1 with the large protein AHNAK2 was observed. Heat shock induced the translocation of FGF1 and AHNAK2 to the cytoskeletal fraction. In heat-shocked cells, FGF1 and the C-terminal fragment of AHNAK2 colocalized with F-actin in the vicinity of the cell membrane. Depletion of AHNAK2 resulted in a drastic decrease of stress-induced FGF1 export but did not affect spontaneous FGF2 export and FGF1 release induced by the inhibition of Notch signaling. Thus, AHNAK2 is an important element of the FGF1 nonclassical export pathway.
Assuntos
Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Via Secretória , Estresse Fisiológico , Actinas/metabolismo , Animais , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/química , Humanos , Espectrometria de Massas , Camundongos , Células NIH 3T3 , TemperaturaRESUMO
BMP9 signaling has been implicated in hereditary hemorrhagic telangiectasia (HHT) and vascular remodeling, acting via the HHT target genes, endoglin and ALK1. This study sought to identify endothelial BMP9-regulated proteins that could affect the HHT phenotype. Gene ontology analysis of cDNA microarray data obtained after BMP9 treatment of primary human endothelial cells indicated regulation of chemokine, adhesion, and inflammation pathways. These responses included the up-regulation of the chemokine CXCL12/SDF1 and down-regulation of its receptor CXCR4. Quantitative mass spectrometry identified additional secreted proteins, including the chemokine CXCL10/IP10. RNA knockdown of endoglin and ALK1 impaired SDF1/CXCR4 regulation by BMP9. Because of the association of SDF1 with ischemia, we analyzed its expression under hypoxia in response to BMP9 in vitro, and during the response to hindlimb ischemia, in endoglin-deficient mice. BMP9 and hypoxia were additive inducers of SDF1 expression. Moreover, the data suggest that endoglin deficiency impaired SDF1 expression in endothelial cells in vivo. Our data implicate BMP9 in regulation of the SDF1/CXCR4 chemokine axis in endothelial cells and point to a role for BMP9 signaling via endoglin in a switch from an SDF1-responsive autocrine phenotype to an SDF1 nonresponsive paracrine state that represses endothelial cell migration and may promote vessel maturation.
Assuntos
Células Endoteliais/citologia , Fatores de Diferenciação de Crescimento/fisiologia , Neovascularização Fisiológica/fisiologia , Receptores de Ativinas Tipo I/fisiologia , Receptores de Activinas Tipo II/fisiologia , Animais , Antígenos CD/fisiologia , Aorta/citologia , Comunicação Autócrina , Hipóxia Celular , Movimento Celular , Quimiocina CXCL12/biossíntese , Quimiocina CXCL12/metabolismo , Meios de Cultivo Condicionados , Endoglina , Células Endoteliais/efeitos dos fármacos , Fator 2 de Diferenciação de Crescimento/farmacologia , Fator 2 de Diferenciação de Crescimento/fisiologia , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Isquemia/fisiopatologia , Camundongos , Comunicação Parácrina , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/fisiologia , Fator de Crescimento Transformador beta1/farmacologiaRESUMO
Pro-angiogenic paracrine/autocrine signaling impacts myocardial repair in cell-based therapies. Activin A receptor-like type 1 (ACVRL1, ALK1) signaling plays a pivotal role in cardiovascular development and maintenance, but its importance in human-derived therapeutic cardiac cells is not well understood. Here, we isolated a subpopulation of human highly proliferative cells (hHiPCs) from adult epicardial tissue and found that they express ALK1, a high affinity receptor for bone morphogenetic protein-9 (BMP9), which signals via SMAD1/5 to regulate paracrine/autocrine signaling and angiogenesis. We show that in humans, circulating BMP9 level is negatively associated with the number of epicardial hHiPC and positively associated with endothelial cell (EC) number in the adult heart, implicating the potential importance of this signaling pathway in cardiac cell fate and vascular maintenance. To investigate BMP9/ALK1 signaling in hHiPCs, we selected a primary cell population of hHiPC from each of 3 individuals and studied their responses to BMP9 and BMP10 treatment in vitro. Proteins were collected in conditioned media (CM) for mass spectrometry and cell-based assays on human ECs and hHiPCs. Proteomic analysis of the hHiPC secretome following BMP9 or BMP10 treatment demonstrates that the secreted proteins, sclerostin (SOST), meflin/immunoglobulin superfamily containing leucine rich repeat (ISLR), and insulin-like growth factor binding protein-3 (IGFBP3), are novel regulated targets of BMP9/ALK1 signaling. Lentiviral shRNA and pharmacological inhibition of ALK1 in hHiPCs suppressed transcription and secretion of SOST, ISLR, and IGFBP3 following BMP9 treatment. Moreover, the BMP9-treated secretome of hHiPC increased capillary-like tube formation of ECs and hHiPCs. Treatment of hHiPCs with recombinant SOST increased VEGF-a expression, increased tube formation and enhanced expression of EC receptor marker annexin A2 (ANXA2). These data provide the first proteomic characterization of hHiPC, identifying BMP9/ALK1-mediated target protein secretion in hHiPCs, and underscore the complex role of BMP9/ALK1 signaling in paracrine/autocrine mediated angiogenesis. Data are available via ProteomeXchange with identifier PXD055302.
RESUMO
Multiple myeloma (MM) is an incurable cancer of plasma cells with a 5-year survival rate of 59%. Dysregulation of fatty acid (FA) metabolism is associated with MM development and progression; however, the underlying mechanisms remain unclear. Acyl-CoA synthetase long-chain family members (ACSLs) convert free long-chain fatty acids into fatty acyl-CoA esters and play key roles in catabolic and anabolic fatty acid metabolism. The Cancer Dependency Map data suggested that ACSL3 and ACSL4 were among the top 25% Hallmark Fatty Acid Metabolism genes that support MM fitness. Here, we show that inhibition of ACSLs in human myeloma cell lines using the pharmacological inhibitor Triascin C (TriC) causes apoptosis and decreases proliferation in a dose- and time-dependent manner. RNA-seq of MM.1S cells treated with TriC for 24 h showed a significant enrichment in apoptosis, ferroptosis, and ER stress. Proteomics of MM.1S cells treated with TriC for 48 h revealed that mitochondrial dysfunction and oxidative phosphorylation were significantly enriched pathways of interest, consistent with our observations of decreased mitochondrial membrane potential and increased mitochondrial superoxide levels. Interestingly, MM.1S cells treated with TriC for 24 h also showed decreased mitochondrial ATP production rates and overall lower cellular respiration.
RESUMO
Angiogenesis is mediated by signaling through receptor tyrosine kinases (RTKs), Src family kinases and adhesion receptors such as integrins, yet the mechanism how these signaling pathways regulate one another remains incompletely understood. The RTK modulator, Sprouty4 (Spry4) inhibits endothelial cell functions and angiogenesis, but the mechanisms remain to be fully elucidated. In this study, we demonstrate that Spry4 regulates angiogenesis in part by regulating endothelial cell migration. Overexpression of Spry4 in human endothelial cells inhibited migration and adhesion on vitronectin (VTN), whereas knockdown of Spry4 enhanced these behaviors. These activities were shown to be c-Src-dependent and Ras-independent. Spry4 disrupted the crosstalk between vascular endothelial growth factor-2 and integrin αVß3, the receptor for VTN. Spry4 overexpression resulted in decreased integrin ß3 protein levels in a post-transcriptional manner in part by modulating its tyrosine phosphorylation by c-Src. Conversely, knockdown of Spry4 resulted in increased integrin ß3 protein levels and tyrosine phosphorylation. Moreover, in vivo analysis revealed that Spry4 regulated integrin ß3 levels in murine embryos and yolk sacs. Our findings identify an unanticipated role for Spry4 in regulating c-Src activity and integrin ß3 protein levels, which contributes to the regulation of migration and adhesion of endothelial cells. Thus, targeting Spry4 may be exploited as a target in anti-angiogenesis therapies.
Assuntos
Células Endoteliais/citologia , Integrina beta3/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neovascularização Fisiológica/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Quinases da Família src/metabolismo , Animais , Aorta/citologia , Proteína Tirosina Quinase CSK , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Embrião de Mamíferos/citologia , Células Endoteliais/metabolismo , Ativação Enzimática , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrina alfaVbeta3/fisiologia , Integrina beta3/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Fosforilação , Fosfotirosina/metabolismo , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vasos Retinianos/crescimento & desenvolvimento , Regulação para Cima , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Vitronectina/metabolismo , Saco Vitelino/citologiaRESUMO
OBJECTIVE: Notch signaling has a critical role in vascular development and morphogenesis. Activation of Notch in endothelial cells led to a senescence-like phenotype with loss of barrier function. Our objective was to understand the molecular pathways mediating this phenotype. METHODS AND RESULTS: Human primary endothelial cells increase expression of Notch receptors and ligands during propagation in vitro toward natural senescence. This senescence was induced at low passage with Notch activation. We characterized the pathways activated downstream of Notch signaling. Notch was activated by Delta-like 4 ligand or constitutively active Notch receptors and measured for cell proliferation, migration, and sprouting. Notch signaling triggered early senescence in low-passage cells, characterized by increased p53 and p21 expression. The senescence phenotype was associated with hyperpermeability of the monolayer, with disrupted vascular endothelial cadherin and ß-catenin levels and localization. Consistent with changes in cell shape and contact, we demonstrated that Notch activation increases myosin light chain phosphorylation by activating Rho kinase. Inhibition of Rho abrogated Notch-induced myosin light chain phosphorylation and led to enhanced barrier function by reorganizing F-actin to ß-catenin-containing cell-cell adherens junctions. CONCLUSIONS: Our findings show that RhoA/Rho kinase regulation by Notch signaling in endothelial cells triggers a senescence phenotype associated with endothelial barrier dysfunction.
Assuntos
Proliferação de Células , Senescência Celular , Células Endoteliais/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Junções Aderentes/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Proteínas de Ligação ao Cálcio , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Endoteliais/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Cadeias Leves de Miosina/metabolismo , Neovascularização Fisiológica , Permeabilidade , Fenótipo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Receptor Notch1/metabolismo , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção , Proteína Supressora de Tumor p53/metabolismo , beta Catenina/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismoRESUMO
Notch and transforming growth factor-beta (TGFbeta) play pivotal roles during vascular development and the pathogenesis of vascular disease. The interaction of these two pathways is not fully understood. The present study utilized primary human smooth muscle cells (SMC) to examine molecular cross-talk between TGFbeta1 and Notch signaling on contractile gene expression. Activation of Notch signaling using Notch intracellular domain or Jagged1 ligand induced smooth muscle alpha-actin (SM actin), smooth muscle myosin heavy chain, and calponin1, and the expression of Notch downstream effectors hairy-related transcription factors. Similarly, TGFbeta1 treatment of human aortic smooth muscle cells induced SM actin, calponin1, and smooth muscle protein 22-alpha (SM22alpha) in a dose- and time-dependent manner. Hairy-related transcription factor proteins, which antagonize Notch activity, also suppressed the TGFbeta1-induced increase in SMC markers, suggesting a general mechanism of inhibition. We found that Notch and TGFbeta1 cooperatively activate SMC marker transcripts and protein through parallel signaling axes. Although the intracellular domain of Notch4 interacted with phosphoSmad2/3 in SMC, this interaction was not observed with Notch1 or Notch2. However, we found that CBF1 co-immunoprecipitated with phosphoSmad2/3, suggesting a mechanism to link canonical Notch signaling to phosphoSmad activity. Indeed, the combination of Notch activation and TGFbeta1 treatment led to synergistic activation of a TGFbeta-responsive promoter. This increase corresponded to increased levels of phosphoSmad2/3 interaction at Smad consensus binding sites within the SM actin, calponin1, and SM22alpha promoters. Thus, Notch and TGFbeta coordinately induce a molecular and functional contractile phenotype by co-regulation of Smad activity at SMC promoters.
Assuntos
Receptor Notch1/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Aorta/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Ligantes , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Contração Muscular , Miócitos de Músculo Liso/metabolismo , Fenótipo , Proteínas Serrate-Jagged , CalponinasRESUMO
BACKGROUND: Transforming growth factor-ß (TGF-ß) plays an important role in vascular homeostasis through effects on vascular smooth muscle cells (SMC). Fine-tuning of TGF-ß signaling occurs at the level of ALK receptors or Smads, and is regulated with cell type specificity. METHODS: Our goal was to understand TGF-ß signaling in regulating SMC differentiation marker expression in human SMC. Activation of Smads was characterized, and loss- and gain-of-function reagents used to define ALK pathways. In addition, Smad-independent mechanisms were determined. RESULTS: TGF-ß type I receptors, ALK1 and ALK5, are expressed in human SMC, and TGF-ß1 phosphorylates Smad1/5/8 and Smad2/3 in a time- and dosage-dependent pattern. ALK5 activity, not bone morphogenetic protein type I receptors, is required for Smad phosphorylation. Endoglin, a TGF-ß type III receptor, is a TGF-ß1 target in SMC, yet endoglin does not modify TGF-ß1 responsiveness. ALK5, not ALK1, is required for TGF-ß1-induction of SMC differentiation markers, and ALK5 signals through an ALK5/Smad3- and MAP kinase-dependent pathway. CONCLUSION: The definition of the specific signaling downstream of TGF-ß regulating SMC differentiation markers will contribute to a better understanding of vascular disorders involving changes in SMC phenotype.
Assuntos
Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Receptores de Activinas Tipo II/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Aorta/citologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Endoglina , Expressão Gênica/fisiologia , Humanos , Músculo Liso Vascular/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad1/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Fator de Crescimento Transformador beta1/farmacologiaRESUMO
Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer and is often caused by mutations in the oxygen-sensing machinery of kidney epithelial cells. Due to its pseudo-hypoxic state, ccRCC recruits extensive vasculature and other stromal components. Conventional cell culture methods provide poor representation of stromal cell types in primary cultures of ccRCC, and we hypothesized that mimicking the extracellular environment of the tumor would promote growth of both tumor and stromal cells. We employed proteomics to identify the components of ccRCC extracellular matrix (ECM) and found that in contrast to healthy kidney cortex, laminin, collagen IV, and entactin/nidogen are minor contributors. Instead, the ccRCC ECM is composed largely of collagen VI, fibronectin, and tenascin C. Analysis of single cell expression data indicates that cancer-associated fibroblasts are a major source of tumor ECM production. Tumor cells as well as stromal cells bind efficiently to a nine-component ECM blend characteristic of ccRCC. Primary patient-derived tumor cells bind the nine-component blend efficiently, allowing to us to establish mixed primary cultures of tumor cells and stromal cells. These miniature patient-specific replicas are conducive to microscopy and can be used to analyze interactions between cells in a model tumor microenvironment.