Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(D1): D640-D647, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34755877

RESUMO

Improved bioassays have significantly increased the rate of identifying new protein-protein interactions (PPIs), and the number of detected human PPIs has greatly exceeded early estimates of human interactome size. These new PPIs provide a more complete view of disease mechanisms but precise understanding of how PPIs affect phenotype remains a challenge. It requires knowledge of PPI context (e.g. tissues, subcellular localizations), and functional roles, especially within pathways and protein complexes. The previous IID release focused on PPI context, providing networks with comprehensive tissue, disease, cellular localization, and druggability annotations. The current update adds developmental stages to the available contexts, and provides a way of assigning context to PPIs that could not be previously annotated due to insufficient data or incompatibility with available context categories (e.g. interactions between membrane and cytoplasmic proteins). This update also annotates PPIs with conservation across species, directionality in pathways, membership in large complexes, interaction stability (i.e. stable or transient), and mutation effects. Enrichment analysis is now available for all annotations, and includes multiple options; for example, context annotations can be analyzed with respect to PPIs or network proteins. In addition to tabular view or download, IID provides online network visualization. This update is available at http://ophid.utoronto.ca/iid.


Assuntos
Bases de Dados de Proteínas , Mapeamento de Interação de Proteínas/métodos , Proteínas/genética , Software , Humanos , Mapas de Interação de Proteínas/genética
2.
J Pathol ; 258(4): 382-394, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36073856

RESUMO

PTEN is one of the most commonly inactivated tumour suppressor genes in sporadic cancer. Germline heterozygous PTEN gene alterations also underlie PTEN hamartoma tumour syndrome (PHTS), a rare human cancer-predisposition condition. A key feature of systemic PTEN deregulation is the inability to adequately dampen PI3-kinase (PI3K)/mTORC1 signalling. PI3K/mTORC1 pathway inhibitors such as rapamycin are therefore expected to neutralise the impact of PTEN loss, rendering this a more druggable context compared with those of other tumour suppressor pathways such as loss of TP53. However, this has not been explored in cancer prevention in a model of germline cancer predisposition, such as PHTS. Clinical trials of short-term treatment with rapamycin have recently been initiated for PHTS, focusing on cognition and colon polyposis. Here, we administered a low dose of rapamycin from the age of 6 weeks onwards to mice with heterozygous germline Pten loss, a mouse model that recapitulates most characteristics of human PHTS. Rapamycin was well tolerated and led to a highly significant improvement of survival in both male and female mice. This was accompanied by a delay in, but not full blockade of, the development of a range of proliferative lesions, including gastro-intestinal and thyroid tumours and endometrial hyperplasia, with no impact on mammary and prostate tumours, and no effect on brain overgrowth. Our data indicate that rapamycin may have cancer prevention potential in human PHTS. This might also be the case for sporadic cancers in which genetic PI3K pathway activation is an early event in tumour development, such as endometrial cancer and some breast cancers. To the best of our knowledge, this is the first report of a long-term treatment of a germline cancer predisposition model with a PI3K/mTOR pathway inhibitor. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Síndrome do Hamartoma Múltiplo , Neoplasias da Glândula Tireoide , Camundongos , Animais , Masculino , Feminino , Humanos , Lactente , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Fosfatidilinositol 3-Quinases/genética , Longevidade , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Síndrome do Hamartoma Múltiplo/tratamento farmacológico , Síndrome do Hamartoma Múltiplo/genética , Síndrome do Hamartoma Múltiplo/patologia , Fosfatidilinositol 3-Quinase/genética , Inibidores de Fosfoinositídeo-3 Quinase , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Células Germinativas/metabolismo , Mutação em Linhagem Germinativa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa