Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 18(11): 2661-2665, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577315

RESUMO

A spectroscopic study of photochromic systems containing two-dimensional CdSe nanoparticles (colloidal quantum wells) and photochromic compounds of the thermally relaxing chromene and thermally irreversible diarylethene classes in solutions was carried out. First, the systems were found to exhibit modulation of emission of two-dimensional nanoparticles in accordance with the photochromic transformations of compounds due to Förster resonance energy transfer (FRET) from the two-dimensional nanoparticles to photoinduced photochromic isomers.

2.
Materials (Basel) ; 17(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38204090

RESUMO

Chiral semiconductor nanostructures and nanoparticles are promising materials for applications in biological sensing, enantioselective separation, photonics, and spin-polarized devices. Here, we studied the induction of chirality in atomically thin only two-monolayer-thick CdSe nanoplatelets (NPLs) grown using a colloidal method and exchanged with L-alanine and L-phenylalanine as model thiol-free chiral ligands. We have developed a novel two-step approach to completely exchange the native oleic acid ligands for chiral amino acids at the basal planes of NPLs. We performed an analysis of the optical and chiroptical properties of the chiral CdSe nanoplatelets with amino acids, which was supplemented by an analysis of the composition and coordination of ligands. After the exchange, the nanoplatelets retained heavy-hole, light-hole, and spin-orbit split-off exciton absorbance and bright heavy-hole exciton luminescence. Capping with thiol-free enantiomer amino acid ligands induced the pronounced chirality of excitons in the nanoplatelets, as proven by circular dichroism spectroscopy, with a high dissymmetry g-factor of up to 3.4 × 10-3 achieved for heavy-hole excitons in the case of L-phenylalanine.

3.
Materials (Basel) ; 16(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770081

RESUMO

Chiral nanostructures exhibiting different absorption of right- and left-handed circularly polarized light are of rapidly growing interest due to their potential applications in various fields. Here, we have studied the induction of chirality in atomically thin (0.6-1.2 nm thick) ZnSe and CdSe nanoplatelets grown by a colloidal method and coated with L-cysteine and N-acetyl-L-cysteine ligands. We conducted an analysis of the optical and chiroptical properties of atomically thin ZnSe and CdSe nanoplatelets, which was supplemented by a detailed analysis of the composition and coordination of ligands. Different signs of circular dichroism were shown for L-cysteine and N-acetyl-L-cysteine ligands, confirmed by different coordination of these ligands on the basal planes of nanoplatelets. A maximum value of the dissymmetry factor of (2-3) × 10-3 was found for N-acetyl-L-cysteine ligand in the case of the thinnest nanoplatelets.

4.
RSC Adv ; 10(55): 33010-33017, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35515072

RESUMO

The development of novel materials with improved functional characteristics for supercapacitor electrodes is of current concern and calls for elaboration of innovative approaches. We report on an eco-friendly enzymatic synthesis of a composite based on poly(3,4-ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs). The redox active compound, sodium 1,2-naphthoquinone-4-sulfonate (NQS), was used as a dopant for the backbone of the polymer. Oxidative polymerization of 3,4-ethylenedioxythiophene (EDOT) was catalyzed by a high redox potential laccase from the fungus Trametes hirsuta. Atmospheric oxygen served as an oxidant. A uniform thin layer of NQS-doped PEDOT formed on the surface of MWCNTs as a result of the enzymatic polymerization. The PEDOT-NQS/MWCNT composite showed a high specific capacitance of ca. 575 F g-1 at a potential scan rate of 5 mV s-1 and an excellent cycling stability within a potential window between -0.5 and 1.0 V, which makes it a promising electrode material for high-performance supercapacitors.

5.
J Biomed Opt ; 14(2): 021004, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19405717

RESUMO

Semiconductor quantum dots (QDs) coupled with cancer-specific targeting ligands are new promising agents for fluorescent visualization of cancer cells. Human epidermal growth factor receptor 2/neu (HER2/neu), overexpressed on the surface of many cancer cells, is an important target for cancer diagnostics. Antibody scFv fragments as a targeting agent for direct delivery of fluorophores offer significant advantages over full-size antibodies due to their small size, lower cross-reactivity, and immunogenicity. We have used quantum dots linked to anti-HER2/neu 4D5 scFv antibody to label HER2/neu-overexpressing live cells. Labeling of target cells was shown to have high brightness, photostability, and specificity. The results indicate that construction based on quantum dots and scFv antibody can be successfully used for cancer cell visualization.


Assuntos
Neoplasias da Mama/patologia , Meios de Contraste , Imunofluorescência/métodos , Aumento da Imagem/métodos , Região Variável de Imunoglobulina , Microscopia de Fluorescência/métodos , Pontos Quânticos , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Humanos , Região Variável de Imunoglobulina/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa