Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003588

RESUMO

A central event in the pathogenesis of Alzheimer's disease (AD) is the accumulation of senile plaques composed of aggregated amyloid-ß (Aß) peptides. The main class of drugs currently used for the treatment of AD are the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. In this study, it has been shown that Aß augmented AChE activity in vitro, maximum activation of 548 ± 5% was achieved following 48 h of incubation with 10 µM of Aß1-40, leading to a 7.7-fold increase in catalytic efficiency. The observed non-competitive type of AChE activation by Aß1-40 was associated with increased Vmax and unchanged Km. Although BChE activity also increased following incubation with Aß1-40, this was less efficiently achieved as compared with AChE. Ex vivo electrophysiological experiments showed that 10 µM of Aß1-40 significantly decreased the effect of the AChE inhibitor huperzine A on the synaptic potential parameters.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Acetilcolinesterase , Peptídeos beta-Amiloides , Butirilcolinesterase , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia
2.
Pest Manag Sci ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034816

RESUMO

BACKGROUND: Surfactants, particularly non-ionic ones, are widely used as adjuvants in pesticide formulations due to their ability to maintain pesticide effectiveness without changing solution properties, such as pH. While non-ionic surfactants are generally low-toxic, stable, and excellent dispersants with high solubilization capabilities, they may be less effective than cationic surfactants, which offer superior surface activity, transport properties, and antimicrobial action. This study investigates the efficacy of new piperidinium surfactants with carbamate fragments as adjuvants in insecticide formulations containing imidacloprid. The efficacy of these formulations is being assessed against greenhouse whitefly, a pest known to harm cultivated and ornamental flowering plants. RESULTS: The aggregation behavior of piperidinium surfactants containing carbamate fragments was investigated, and their wetting effect was evaluated. Synthesized surfactants have lower CMC values compared to their methylpiperidinium analogue. The effect of piperidinium surfactants on the insecticide concentration on the surface and inside tomato leaves was assessed using spectrophotometric methods. It was found that the introduction of piperidinium surfactants with carbamate fragment at a concentration of 0.1% wt. allows for decrease in lethal concentration of imidacloprid up to 10 times, thereby testifying the marked increase in the effectiveness of imidacloprid against the greenhouse whitefly insect pest (Trialeurodes vaporariorum). It was shown that the main factors responsible for the enhanced efficacy of the insecticide were the ability of the surfactant to increase the concentration of imidacloprid on the leaf surfaces and improve their penetration into the plant. CONCLUSION: The presented work employed a comprehensive approach, which significantly increases the generalizability of the results obtained and provides the ability to predict the effect and target selection of adjuvants. © 2024 Society of Chemical Industry.

3.
Biochim Biophys Acta Gen Subj ; 1868(3): 130562, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218459

RESUMO

The biomimetic nature of supramolecular systems, the structural similarity of synthetic surfactants to biomolecules (lipids, proteins), provide them with high membranotropy, the ability to overcome biological barriers, and affinity towards biosubstances. Despite rather high toxicity cationic surfactants are of importance as antimicrobial agents, gene nanocarriers and mitochondria targeted ligands. To minimize this limitation, cationic amphiphilic matrix undergoes modification with various functional groups. In this work, new piperidinium cationic surfactants containing one or two carbamate fragments were prepared; their aggregation behavior was systematically studied by tensiometery, spectrophotometry and fluorimetry. The presence of a carbamate fragment leads to a 2-3-fold decrease in critical micelle concentration and to a significant increase in solubilization capacity compared to unsubstituted analogue. Evaluation of the antimicrobial effect showed that all compounds exhibit high bactericidal and fungicidal activity against a wide range of pathogenic microorganisms, including their resistant forms. Importantly, the introducing carbamate moiety allows of decreasing hemolytic activity of cationic surfactants. The data obtained make it possible to recommend carbamate piperidinium surfactants as effective biocompatible and biodegradable nanocontainers for hydrophobic probes with high antimicrobial effect and moderate hemolytic activity.


Assuntos
Anti-Infecciosos , Tensoativos , Tensoativos/farmacologia , Tensoativos/química , Carbamatos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Micelas
4.
Nanomaterials (Basel) ; 13(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985966

RESUMO

OBJECTIVES: This study was aimed at the investigation of the supramolecular systems based on cationic surfactants bearing cyclic head groups (imidazolium and pyrrolidinium) and polyanions (polyacrylic acid (PAA) and human serum albumin (HSA)), and factors governing their structural behavior to create functional nanosystems with controlled properties. Research hypothesis. Mixed PE-surfactant complexes based on oppositely charged species are characterized by multifactor behavior strongly affected by the nature of both components. It was expected that the transition from a single surfactant solution to an admixture with PE might provide synergetic effects on structural characteristics and functional activity. To test this assumption, the concentration thresholds of aggregation, dimensional and charge characteristics, and solubilization capacity of amphiphiles in the presence of PEs have been determined by tensiometry, fluorescence and UV-visible spectroscopy, and dynamic and electrophoretic light scattering. RESULTS: The formation of mixed surfactant-PAA aggregates with a hydrodynamic diameter of 100-180 nm has been shown. Polyanion additives led to a decrease in the critical micelle concentration of surfactants by two orders of magnitude (from 1 mM to 0.01 mM). A gradual increase in the zeta potential of HAS-surfactant systems from negative to positive value indicates that the electrostatic mechanism contributes to the binding of components. Additionally, 3D and conventional fluorescence spectroscopy showed that imidazolium surfactant had little effect on HSA conformation, and component binding occurs due to hydrogen bonding and Van der Waals interactions through the tryptophan amino acid residue of the protein. Surfactant-polyanion nanostructures improve the solubility of lipophilic medicines such as Warfarin, Amphotericin B, and Meloxicam. PERSPECTIVES: Surfactant-PE composition demonstrated beneficial solubilization activity and can be recommended for the construction of nanocontainers for hydrophobic drugs, with their efficacy tuned by the variation in surfactant head group and the nature of polyanions.

5.
ACS Omega ; 7(29): 25741-25750, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910111

RESUMO

New hybrid liposomes based on cationic amphiphiles with different structures of the head group (cetyltrimethylammonium bromide (CTAB), 3-hexadecyl-1-hydroxyethylimidazolium bromide (IA-16(OH)), 1-(butylcarbamoyl)oxyethyl-3-hexadecylimidazolium bromide (IAC 16(Bu)), and hexadecylmethylpyrrolidinium bromide (PR-16)) were developed for transdermal administration of nonsteroidal anti-inflammatory drugs. The different surfactant/lipid compositions were studied to obtain stable liposomes with high functionality. The hydrodynamic diameter of cationic liposomes was ∼110 nm. An admixture of cationic surfactants and PC liposomes improves the physicochemical properties of vesicles and transdermal diffusion rate and prolongs the release of drugs. Liposomal diclofenac sodium (DS) and ketoprofen (KP) were tested (using Franz cells) for transdermal penetration. Drug diffusion monitoring for 48 h demonstrated that the maximum DS and KP penetration through the synthetic membranes (Strat-M) is characterized by values of 255 ± 2 and 186 ± 3 µg/cm2, respectively. The influence of the surfactant head group on the properties (stability, release profile, permeability) of cationic liposomes was shown for the first time. While the drug specificity is evident for the rate of release, the permeability increases as follows: conventional liposomes < CTAB/PC < PR-16/PC < IAC-16(Bu)/PC < IA-16(OH)/PC for both medicines. The rat paw edema model was used to assess the anti-inflammatory effect of the IA-16(OH)/PC leader formulation in vivo. It was found that liposomal DS and KP are effective for relieving rat paw edema. It should be noted that DS-loaded hybrid liposomes demonstrated the highest therapeutic efficacy compared to conventional vesicles.

6.
Pharmaceutics ; 14(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36559339

RESUMO

Chitosan-decorated liposomes were proposed for the first time for the intranasal delivery of acetylcholinesterase (AChE) reactivator pralidoxime chloride (2-PAM) to the brain as a therapy for organophosphorus compounds (OPs) poisoning. Firstly, the chitosome composition based on phospholipids, cholesterol, chitosans (Cs) of different molecular weights, and its arginine derivative was developed and optimized. The use of the polymer modification led to an increase in the encapsulation efficiency toward rhodamine B (RhB; ~85%) and 2-PAM (~60%) by 20% compared to conventional liposomes. The formation of monodispersed and stable nanosized particles with a hydrodynamic diameter of up to 130 nm was shown using dynamic light scattering. The addition of the polymers recharged the liposome surface (from -15 mV to +20 mV), which demonstrates the successful deposition of Cs on the vesicles. In vitro spectrophotometric analysis showed a slow release of substrates (RhB and 2-PAM) from the nanocontainers, while the concentration and Cs type did not significantly affect the chitosome permeability. Flow cytometry and fluorescence microscopy qualitatively and quantitatively demonstrated the penetration of the developed chitosomes into normal Chang liver and M-HeLa cervical cancer cells. At the final stage, the ability of the formulated 2-PAM to reactivate brain AChE was assessed in a model of paraoxon-induced poisoning in an in vivo test. Intranasal administration of 2-PAM-containing chitosomes allows it to reach the degree of enzyme reactivation up to 35 ± 4%.

7.
Pharmaceutics ; 14(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36145698

RESUMO

One of the main problems in the treatment of poisoning with organophosphorus (OPs) inhibitors of acetylcholinesterase (AChE) is low ability of existing reactivators of AChE that are used as antidotes to cross the blood-brain barrier (BBB). In this work, modified cationic liposomes were developed that can penetrate through the BBB and deliver the reactivator of AChE pralidoxime chloride (2-PAM) into the brain. Liposomes were obtained on the basis of phosphatidylcholine and imidazolium surfactants. To obtain the composition optimized in terms of charge, stability, and toxicity, the molar ratio of surfactant/lipid was varied. For the systems, physicochemical parameters, release profiles of the substrates (rhodamine B, 2-PAM), hemolytic activity and ability to cause hemagglutination were evaluated. Screening of liposome penetration through the BBB, analysis of 2-PAM pharmacokinetics, and in vivo AChE reactivation showed that modified liposomes readily pass into the brain and reactivate brain AChE in rats poisoned with paraoxon (POX) by 25%. For the first time, an assessment was made of the ability of imidazolium liposomes loaded with 2-PAM to reduce the death of neurons in the brains of mice. It was shown that intravenous administration of liposomal 2-PAM can significantly reduce POX-induced neuronal death in the hippocampus.

8.
Int J Pharm ; 605: 120803, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34144135

RESUMO

New liposomes modified with pyrrolidinium surfactants containing a hydroxyethyl fragment (CnPB, n = 12, 14, 16) were prepared for transdermal delivery of non-steroidal anti-inflammatory drugs. In order to obtain the optimal composition, the surfactant/lipid molar ratio (0.02/1; 0.029/1; 0.04/1) and the amphiphile hydrocarbon tail length were varied. Rhodamine B was loaded in all formulations, while meloxicam and ketoprofen in selected ones. For liposomes studied the hydrodynamic diameter was in the range of 80-130 nm, the zeta potential ranged from +35 to +50 mV, EE was 75-99%. Liposome modification leads to a prolonged release of the rhodamine B (up to 10-12 h) and faster release of non-steroidal drugs (up to 7-8 h) in vitro. The ability to cross the skin barrier using Franz cells was investigated for liposomal meloxicam and ketoprofen. The total amount of meloxicam and ketoprofen passed through the Strat-M® membranes during 51 h was 51-114 µg/cm2 and 87-105 µg/cm2 respectively. The evaluation of transdermal diffusion ex vivo showed that total amount of liposomal ketoprofen passed through the skin during 51 h was 140-162 µg/cm2. Liposomes modified with C16PB were found as the most effective inflammation reducing formulation in the carrageenan edema model of rat paw.


Assuntos
Cetoprofeno , Lipossomos , Administração Cutânea , Animais , Anti-Inflamatórios não Esteroides , Meloxicam , Tamanho da Partícula , Ratos , Pele
9.
Colloids Surf B Biointerfaces ; 140: 269-277, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26764110

RESUMO

Gemini surfactants with hexadecyl tails and hydroxyethylated head groups bridged with tetramethylene (G4), hexamethylene (G6) and dodecamethylene (G12) spacers were shown to self-assemble at the lower critical micelle concentration compared to their conventional m-s-m analogs. The lipoplex formation and the plasmid DNA transfer into different kinds of host cells were studied. In the case of eukaryotic cells, high transfection efficacy has been demonstrated for DNA-gemini complexes, which increased as follows: G6G4>G12 has been obtained in the case of transformation of bacterial cells with plasmid DNA-gemini complexes, mediated by electroporation technique. Solely G6 shows transformation efficacy exceeding the control result (uncomplexed DNA), while the inhibitory effect occurs for G4 and G12. Analysis of physico-chemical features of single surfactants and lipoplexes shows that compaction and condensation effects change as follows: G6

Assuntos
Técnicas de Transferência de Genes , Compostos de Amônio Quaternário/química , Tensoativos/química , Transfecção/métodos , DNA/química , DNA/genética , Eletroporação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Microscopia de Força Atômica , Estrutura Molecular , Conformação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/genética , Reprodutibilidade dos Testes , Relação Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa