Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 46(11): 106, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917357

RESUMO

In this work using computer simulations of 3D model of dense disordered solids we show, for the first time, the appearance of shear localization in the stationary flow under homogeneous driving conditions. To rationalize our simulation results we develop a continuum model, that couples the dynamics of the local flow to the evolution of a kinetic temperature field related to the local inertial dynamics. Our model predicts that the coupling of the flow field to this additional destabilizing field appears only as a necessary condition for shear localization, a minimum system size is necessary to accommodate the flow instability. Moreover we show that this size criterion resulting from our continuum description is in quantitative agreement with our particle-based simulation results.

2.
Soft Matter ; 18(34): 6426-6436, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35980086

RESUMO

In soft amorphous materials, shear cessation after large shear deformation leads to configurations having residual shear stress. The origin of these states and the distribution of the local shear stresses within the material is not well understood, despite its importance for the change in material properties and consequent applications. In this work, we use molecular dynamics simulations of a model dense non-Brownian soft amorphous material to probe the non-trivial relaxation process towards a residual stress state. We find that, similar to thermal glasses, an increase in shear rate prior to the shear cessation leads to lower residual stress states. We rationalise our findings using a mesoscopic elasto-plastic description that explicitly includes a long range elastic response to local shear transformations. We find that after flow cessation the initial stress relaxation indeed depends on the pre-sheared stress state, but the final residual stress is majorly determined by newly activated plastic events occurring during the relaxation process, a scenario consistent with the phenomenology of avalanche dynamics in the low shear rate limit of steadily sheared amorphous solids. Our simplified coarse grained description not only allows capturing the phenomenology of residual stress states but also rationalising the altered material properties that are probed using small and large deformation protocols applied to the relaxed material.

3.
J Chem Phys ; 155(19): 194502, 2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34800966

RESUMO

We study the kinetics of crystallization in deeply supercooled liquid silicon employing computer simulations and the Stillinger-Weber three-body potential. The free energy barriers to crystallization are computed using umbrella sampling Monte Carlo simulations and from unconstrained molecular dynamics simulations using a mean first passage time formulation. We focus on state points that have been described in earlier work [S. Sastry and C. A. Angell, Nat. Mater. 2, 739 (2003)] as straddling a liquid-liquid phase transition (LLPT) between two metastable liquid states. It was argued subsequently [Ricci et al., Mol. Phys. 117, 3254 (2019)] that the apparent transition is due to the loss of metastability of the liquid state with respect to the crystalline state. The presence of a barrier to crystallization for these state points is therefore of importance to ascertain, which we investigate, with due attention to ambiguities that may arise from the choice of order parameters. We find a well-defined free energy barrier to crystallization and demonstrate that both umbrella sampling and mean first passage time methods yield results that agree quantitatively. Our results thus provide strong evidence against the possibility that the liquids at state points close to the reported LLPT exhibit slow, spontaneous crystallization, but they do not address the existence of a LLPT (or lack thereof). We also compute the free energy barriers to crystallization at other state points over a broad range of temperatures and pressures and discuss the effect of changes in the microscopic structure of the metastable liquid on the free energy barrier heights.

4.
Phys Rev Lett ; 120(1): 018001, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350955

RESUMO

We use a combination of confocal microscopy, rheology, and molecular dynamics simulations to investigate jammed emulsions under shear, by analyzing the 3D droplets rearrangements in the shear frame. Our quantitative analysis of local dynamics reveals elementary nonaffine rearrangements that underlie the onset of the flow at small strains. We find that the mechanism of unjamming and the upturn in the material flow curve are associated to a qualitative change in spatiotemporal correlations of such rearrangements with the applied shear rate. At high shear rates, droplet clusters follow coordinated, stringlike motion. Conversely, at low shear rates, the elementary nonaffine rearrangements exhibit longer-ranged correlations, with complex spatiotemporal patterns. The 3D microscopic details provide novel insights into the specific features of the material flow curve, common to a large class of technologically relevant soft disordered solids and new fundamental ingredients for constitutive models.

5.
J Chem Phys ; 140(4): 044503, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25669551

RESUMO

By modifying the tetrahedrality (the strength of the three body interactions) in the well-known Stillinger-Weber model for silicon, we study the diffusivity of a series of model liquids as a function of tetrahedrality and temperature at fixed pressure. Previous work has shown that at constant temperature, the diffusivity exhibits a maximum as a function of tetrahedrality, which we refer to as the diffusivity anomaly, in analogy with the well-known anomaly in water upon variation of pressure at constant temperature. We explore to what extent the structural and thermodynamic changes accompanying changes in the interaction potential can help rationalize the diffusivity anomaly, by employing the Rosenfeld relation between diffusivity and the excess entropy (over the ideal gas reference value), and the pair correlation entropy, which provides an approximation to the excess entropy in terms of the pair correlation function. We find that in the modified Stillinger-Weber liquids, the Rosenfeld relation works well above the melting temperatures but exhibits deviations below, with the deviations becoming smaller for smaller tetrahedrality. Further we find that both the excess entropy and the pair correlation entropy at constant temperature go through maxima as a function of the tetrahedrality, thus demonstrating the close relationship between structural, thermodynamic, and dynamical anomalies in the modified Stillinger-Weber liquids.

6.
J Chem Phys ; 141(12): 124501, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25273445

RESUMO

Anomalous behaviour in density, diffusivity, and structural order is investigated for silicon modeled by the Stillinger-Weber potential by performing molecular dynamics simulations. As previously reported in the case of water [J. R. Errington and P. G. Debenedetti, Nature (London) 409, 318 (2001)] and silica [M. S. Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, Phys. Rev. E 66, 011202 (2002)], a cascading of thermodynamic, dynamic, and structural anomalous regions is also observed in liquid silicon. The region of structural anomaly includes the region of diffusivity anomaly, which in turn encompasses the region of density anomaly (which is unlike water but similar to silica). In the region of structural anomaly, a tight correlation between the translational and tetrahedrality order parameter is found, but the correlation is weaker when a local orientational order parameter (q3) is used as a measure of tetrahedrality. The total excess entropy and the pair correlation entropy are computed across the phase diagram and the correlation between the excess entropy and the regions of anomalies in the phase diagram of liquid silicon is examined. Scaling relations associating the excess entropy with the diffusion coefficient show considerable deviation from the quasi-universal behaviour observed in hard-sphere and Lennard-Jones liquids and some liquid metals. Excess entropy based criteria for diffusivity and structural anomalies fail to capture the observed regions of anomaly.

7.
Phys Rev E ; 102(1-1): 012603, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32795069

RESUMO

We have designed three-dimensional numerical simulations of a soft spheres model, with size polidispersity and in athermal conditions, to study the transient shear banding that occurs during yielding of jammed soft solids. We analyze the effects of different types of drag coefficients used in the simulations and compare the results obtained using Lees-Edwards periodic boundary conditions with the case in which the same model solid is confined between two walls. The specific damping mechanism and the different boundary conditions indeed modify the load curves and the velocity profiles in the transient regime. Nevertheless, we find that the presence of a stress overshoot and of a related transient banding phenomenon, for large enough samples, is a robust feature for overdamped systems, where their presence do not depend on the specific drag used and on the different boundary conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa