Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 60(23): 17529-17536, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34807593

RESUMO

A novel ligand N,N'-bis(N″,N″-diethyl carbamoyl) piperazine (BDECP), L1, is synthesized as a selective precipitant for hexavalent actinyl (UO22+ and PuO22+) ions from an aqueous nitric acid medium. The ligand BDECP forms an infinite one-dimensional coordination polymer with uranyl nitrate and behaves as a bridging bidentate neutral donor. There is an alternate repetition of [UO2(NO3)2] and BDECP units as evidenced by single-crystal X-ray diffraction. Uranyl ion (UO22+) can be precipitated in >99% yield from an aqueous nitric acid medium. L1 shows fast kinetics of precipitation of uranyl ion as compared to those of other reported ligands like N-alkyl pyrolidone and N-(1-adamantyl) acetamide. Avrami's coefficient, obtained from the Avrami-Erofe'ev equation, shows that the precipitation mechanism is controlled by the phase boundary and not governed by diffusion. Theoretical studies of the uranyl complex of L1 show that there is no thermodynamic preference for L1 as compared to other potential amide-based precipitants. The principal factors that govern the fast kinetics of precipitation are the aqueous solubility and higher charge density on the amide oxygen of L1.

2.
Langmuir ; 33(33): 8114-8122, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28749681

RESUMO

Uranium is one of the most toxic and important elements present in the environment, and because of its high toxicity, ultra-trace-level detection is of utmost importance. Many methods were reported earlier for this purpose, but each has its own limitations such as high cost, sophisticated instrumentation, sample processing, and so forth. Herein we have demonstrated an alternate method that is much simpler and can be used for the ultra-trace-level detection of uranium. We have synthesized 3-mercaptopropionic acid (MPA)-capped CdSe/CdS core-shell quantum dots (CSQDs) and used its photoluminescence properties to detect uranium in solution. Steady-state emission studies suggest the luminescence quenching of CSQDs in the presence of uranium. Redox levels of CSQDs and uranium suggests that the electron-transfer process from photoexcited CSQDs to uranium is a thermodynamically viable process, which has subsequently been confirmed by time-resolved studies. A Stern-Volmer plot of CSQDs with uranium suggests that the detection limit of this method is 74.5 ppb. The method has an advantage over other reported methods for being simple and low cost and requiring a small amout of sample processing. To the best of our knowledge, we are reporting for the first time uranium detection using quasi-type II CSQDs and proposing the mechanistic path through luminescence spectroscopy, which in turn helps us to design an efficient detection method.

3.
ACS Omega ; 9(33): 35873-35887, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39184507

RESUMO

The structure and stability of charge-coupled lanthanide-substituted Ca10(PO4)6F2 as a potential fluoride-bearing nuclear waste form for the back-end fuel cycle of Gen-IV molten salt reactor have been studied in detail. Here, calcium fluorapatite (CaFAp) as a model structure was taken for incorporation of trivalent lanthanides (Lns, La-Lu except Pm) in a charge-coupled fashion, i.e., 2Ca2+ = Na+ + Ln3+. In these fluorapatite phases, Na+ is substituted exclusively at nine coordinated sites, Ca1, while Ln3+ is preferentially substituted at seven coordinated sites, Ca2. These compositions are further characterized for the local structure by Fourier transform infrared (FTIR) and Raman spectroscopy. Thermal expansion was measured by high-temperature X-ray diffraction (XRD) and the instantaneous thermal expansion coefficient correlates well with the unsubstituted CaFAp. The heat capacities of these solids were measured by differential scanning calorimetry and drop calorimetry, whereas enthalpies of formation were obtained by high-temperature oxide melt solution calorimetry. The thermodynamic analysis demonstrated that lanthanides having ionic radii closure to Ca2+ (Sm3+ and Gd3+) imparted higher thermodynamic stability to the substituted CaFAp as compared to that of other Ln3+. According to structural and thermodynamic investigations, entropy-stabilized fluorapatite waste from NaPr0.125Nd0.125Sm0.125Eu0.125Gd0.125Tb0.125Dy0.125Ho0.125Ca8(PO4)6F2 (WF-Ln) was successfully synthesized for the first time. Furthermore, electron beam irradiation studies probed by XRD, FTIR, Raman, and X-ray absorption (XAS) spectroscopy implied the radiation resistance nature of this substituted CaFAps up to 20 MGy.

4.
RSC Adv ; 14(31): 22656-22664, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39027037

RESUMO

Copper sulfide nanostructures have evolved as one of the most technologically important materials for energy conversion and storage owing to their economic and non-toxic nature and superior performances. This paper presents a direct, scalable synthetic route aided by a single source molecular precursor (SSP) approach to access copper sulfide nanomaterials. Two SSPs, CuX(dmpymSH)(PPh3)2 (where X = Cl or I), were synthesized in quantitative yields and thermolyzed under appropriate conditions to afford the nanostructures. The analysis of the nanostructures through pXRD, EDS and XPS suggested that phase pure digenite (Cu9S5) and djurleite (Cu31S16) nanostructures were isolated from -Cl and -I substituted SSPs, respectively. The morphologies of the as-synthesized nanomaterials were investigated using electron microscopy techniques (SEM and TEM). DRS studies on pristine materials revealed blue shifted optical band gaps, which were found to be optimum for photoelectrochemical application. A prototype photoelectrochemical cell fabricated using the pristine nanostructures exhibited a stable photo-switching property, which presents these materials as suitable economic and environmentally friendly photon absorber materials.

5.
Dalton Trans ; 51(33): 12670-12685, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35938959

RESUMO

Copper selenide (Cu1.8Se) and silver selenide (Ag2Se) have garnered unprecedented attention as efficient absorber materials for cost-effective and sustainable solar cells. Phase pure preparation of these exotic materials in a nano-regime is highly desirable. This account outlines a simple and easily scalable pathway to Cu1.8Se and Ag2Se nanocrystals using novel complexes [Cu{2-SeC5H2(Me-4,6)2N}]4 (1), [Ag{2-SeC5H2(Me-4,6)2N}]6 (2) and [Ag{2-SeC5H3(Me-5)N}]6·2C6H5CH3 (3·2C6H5CH3) as single source molecular precursors (SSPs). Structural studies revealed that the Cu and Ag complexes crystallize into tetrameric and hexameric forms, respectively. This observed structural diversity in the complexes has been rationalized via DFT calculations and attributed to metal-metal bond endorsed energetics. The thermolysis at relatively lower temperature in oleylamine of complex 1 afforded cubic berzelianite Cu1.8Se and complexes 2 and 3 produced orthorhombic naumannite Ag2Se nanocrystals. The low temperature synthesis of these nanocrystals seems to be driven by the observed preformed Cu4Se4 and Ag6Se6 core in the complexes which have close resemblance with the bulk structure of the final materials (Cu1.8Se and Ag2Se). The crystal structure, phase purity, morphology, elemental composition and band gap of these nanocrystals were determined from pXRD, electron microscopy (SEM and TEM), EDS and DRS-UV, respectively. The band gap of these nanocrystals lies in the range suitable for solar cell applications. Finally, these nanocrystal-based prototype photo-electrochemical cells exhibit high photoresponsivity and stability under alternating light and dark conditions.

6.
J Hazard Mater ; 384: 121353, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31611018

RESUMO

Phosphoramide functionalized Fe3O4 nanoparticles (NPs) were synthesized by a three step procedure and its application for uranium extraction from different enviornmental matrices has been demonstrated. A maximum adsorption capacity of 95.2 mg of U/g of the sorbent has been achieved which is higher as compared to many reported magnetic NPs. pH dependent adsorption studies were performed at 1 ppm uranium concentrations which suggests more than 80% adsorption in pH range of 4-8 with maximum adsorption at pH 6. Interestingly this is the pH range of most naturally occurring water bodies suggesting the potential of this material to extract uranium from real environmental samples. Adsorption studies were carried out with tap water, drinking water and sea water and more than 90% uranium extraction was observed. Desorption studies were performed with different reagents suggesting that the material can be reused again. EXAFS studies have been carried out which suggests that the uranium binds with oxygens of three PO group at the surface of phosphoramide functionalized NPs and based on this, binding mode of uranium with the synthesized sorbent is proposed.

7.
ACS Appl Mater Interfaces ; 9(24): 20536-20544, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28537079

RESUMO

Considering the high toxicity and widespread availability of fluoride ions in different environmental matrices, it is imperative to design a probe for its detection. In view of this, a selective fluorescent on-off-on probe based on carbon quantum dots (CQDs) and Eu3+ has been designed. We have synthesized water-soluble carboxylic acid-functionalized CQDs and monitored their interaction with Eu3+. Luminescence quenching in the CQD emission was observed (switch-off) on adding Eu3+ ions. We investigate the reason for this luminescence quenching using time-resolved emission and high-resolution transmission electron microscopy (HRTEM) studies and observed that both electron transfer from CQDs to Eu3+ and aggregation of CQDs are responsible for the luminescence quenching. ζ-Potential and X-ray photoelectron spectroscopy studies confirm Eu3+ binding with the COOH groups on CQD surface. Interestingly, luminescence regains after the addition of fluoride ions to the CQDs/Eu3+ system (switch-on). This has been assigned to the removal of Eu3+ from the CQD surface due to the formation of EuF3 and is confirmed by X-ray diffraction and HRTEM measurements. The sensitivity of the probe was tested by carrying out experiments with other competing ions and was found to be selective for fluoride ions. Experiments with variable concentrations of fluoride ions suggest that the working range of the probe is 1-25 ppm. The probe has been successfully tested for the detection of fluoride ions in a toothpaste sample and the results were compared to those of ion chromatography. To the best of our knowledge, this is the first report based on CQDs and Eu3+ for the detection of fluoride ions, wherein a clear mechanism of the detection has been demonstrated, which, in turn, will help to develop better detection methods. The suggested probe is green, economical, rapid, efficient, and, most importantly, selective and can be used for the detection of fluoride ions in real environmental samples.

8.
Dalton Trans ; 45(25): 10319-25, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27241102

RESUMO

The selective separation of uranyl ions from an aqueous solution is one of the most important criteria for sustainable nuclear energy production. We report herein a known, but unexplored extractant, tetraalkyl urea, which shows supreme selectivity for uranium in the presence of interfering thorium and other lanthanide ions from a nitric acid medium. The structural characterization of the uranyl complex (UO2X2·2L, where X = NO3(-), Cl(-) and Br(-)) by IR, NMR and single crystal X-ray diffraction provides insight into the strong interaction between the uranyl ion and the ligand. The origin of this supreme selectivity for uranyl ions is further supported by electronic structure calculations. Uranyl binding with the extractant is thermodynamically more favourable when compared to thorium and the selectivity is achieved through a combination of electronic and steric effects.

9.
Dalton Trans ; 43(14): 5252-5, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24509768

RESUMO

A monoamide, N,N'-dioctyl, α-hydroxy acetamide, shows unusual extraction properties towards trivalent lanthanide and actinide ions above 3 M HNO3. The extracted ions could be quantitatively back extracted using 0.5 M HNO3. This amide shows negligible extraction towards Sr(II) and Ru(III) ions, making it advantageous over other reported extractants. The structures of Sm(III) and Eu(III) nitrate compounds show that the metal ion is surrounded by three of the ligands, one nitrate and one water molecule. The ligand acts as a neutral bidentate ligand and bonds through the amido and hydroxyl oxygen atoms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa