RESUMO
This study was devoted to the development of novel devices and a methodology intended for generating ultrasonic waves in an air medium by using atmospheric pressure gas discharge. In the proposed electrode system, the discharge process was accompanied by the generation of acoustic waves on the emitter surface and, consequently, in the ambient air. The gas discharge emitter vibrations were analyzed by applying the technique of Scanning Laser Doppler Vibrometry (SLDV). It was shown that the magnitude of displacements matched the corresponding characteristics of classical piezoelectric and magnetostrictive transducers. The use of the Fast Fourier transform procedure supplied amplitude-frequency spectra of vibrations generated by the gas discharge emitter. The amplitude-frequency spectrum analysis showed that the proposed emitter was able to generate acoustic waves in the air with frequencies from 50 Hz to 100 kHz, and such a device can be used for the nondestructive testing (NDT) of materials. The results of the statistical analysis of vibration displacements in the repetitive pulsed mode were discussed. A non-stable characteristic of the vibration displacement of the emitter membrane was demonstrated. The parameters of such instability were associated with the features of gas discharge processes. In the experiments, the proposed gas discharge emitter was used in combination with SLDV for inspecting carbon-fiber-reinforced polymer composites. The experiments demonstrated the possibility of using an air-coupled gas discharge transmitter to generate acoustic waves in NDT applications.
RESUMO
The technique of 3D scanning laser Doppler vibrometry has recently appeared as a promising tool of nondestructive evaluation of discontinuity-like defects in composite polymers. The use of the phenomenon of local defect resonance (LDR) allows intensifying vibrations in defect zones, which can reliably be detected by means of laser vibrometry. The resonance acoustic stimulation of structural defects in materials causes compression/tension deformations, which are essentially lower than the material tensile strength, thus proving a nondestructive character of the LDR technique. In this study, the propagation of elastic waves in composites and their interaction with structural inhomogeneities were analyzed by performing 3D scanning of vibrations in Fast Fourier Transform mode. At each scanning point, the in-plane (x, y) and out of plane (z) vibration components were analyzed. The acoustic stimulation was fulfilled by generating a frequency-modulated harmonic signal in the range from 50 Hz to 100 kHz. In the case of a reference plate with a flat bottom hole, the resonance frequencies for all (x, y, and z) components were identical. In the case of impact damage in a carbon fiber reinforced plastic sample, the predominant contribution into total vibrations was provided by compression/tension deformations (x, y vibration component) to compare with vibrations by the z coordinate. In general, inspection results were enhanced by analyzing total vibration patterns obtained by averaging results at some resonance frequencies.
RESUMO
This study is focused on the quantitative estimation of defect depth by applying pulsed thermal nondestructive testing. The majority of known defect characterization techniques are based on 1D heat conduction solutions, thus being inappropriate for evaluating defects with low aspect ratios. A novel method for estimating defect depth is proposed by taking into account the phenomenon of 3D heat diffusion, finite lateral size of defects and the thermal reflection coefficient at the boundary between a host material and defects. The method is based on the combination of a known analytical model and a non-linear fitting (NLF) procedure. The algorithm was verified both numerically and experimentally on 3D-printed polylactic acid plastic samples. The accuracy of depth prediction using the proposed method was compared with the reference characterization technique based on thermographic signal reconstruction to demonstrate the efficiency of the proposed NLF method.