Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Chin J Physiol ; 54(5): 339-46, 2011 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-22135913

RESUMO

This study was to describe and compare the physiological demands of ultra-endurance cyclists during a 24 h cycling relay race. Eleven male athletes (means +/- SD: 34.8 +/- 5.6 years; 71.6 +/- 4.9 kg; 174.6 +/- 7.3 cm; BMI 23.5 +/- 0.5 kg/m2; VO2 max: 66.0 +/- 6.4 ml/kg/min) participated in the study; eight in teams with a format of four riders (4C) and three in teams with six riders (6C). To investigate exercise intensity, heart rate (HR) was recorded while cycling using portable telemetric monitors. Three different exercise intensities were defined according to the reference HR values obtained during a pre race laboratory incremental VO2 max test: Zone I (< anaerobic threshold [AT]), Zone II (between AT and the respiratory compensation point [RCP]), Zone III (> RCP). Total volume and intensity were integrated as a single variable (training impulse: TRIMP). The score for TRIMP in each zone was computed by multiplying the accumulated duration in this zone by a multiplier for this particular zone of exercise intensity. The average intensity did not differ between cyclists in 4C (means +/- SD; 4C: 87 +/- 3 HRmax) and 6C (87 +/- 1% of HRmax), despite the higher volume performed by 4C (means +/- SD; 4C: 361 +/- 65; 6C: 242 +/- 25 per min; P = 0.012). These differences in total exercise volume significantly affected the values TRIMP accumulated (means +/- SD; 4C: 801 +/- 98, confidence interval [CI] 95%: 719 - 884; 6C: 513 +/- 25, CI 95%: 451 - 575; P = 0.012). The ultra-endurance threshold of 4C and 6C athletes lies at about 87% of HRmax for both. Although the intensity profile was similar, the TRIMP values differed significantly as a consequence of the higher volume performed by the 4C cyclists.


Assuntos
Ciclismo/fisiologia , Resistência Física , Adulto , Frequência Cardíaca , Humanos , Masculino , Relatório de Pesquisa
2.
HardwareX ; 7: e00087, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35495211

RESUMO

Hyperspectral Imaging Sensors (HSI) obtain spectral information from an object, and they are used to solve problems in Remote Sensing, Food Analysis, Precision Agriculture, and others. This paper took advantage of modern high-resolution cameras, electronics, and optics to develop a robust, low-cost, and easy to assemble HSI device. This device could be used to evaluate new algorithms for hyperspectral image analysis and explore its feasibility to develop new applications on a low-budget. It weighs up to 300 g, detects wavelengths from 400 nm-1052 nm, and generates up to 315 different wavebands with a spectral resolution up to 2.0698 nm. Its spatial resolution of 116 × 110 pixels works for many applications. Furthermore, with only 2% of the cost of commercial HSI devices with similar characteristics, it has shown high spectral accuracy in controlled light conditions as well as ambient light conditions. Unlike related works, the proposed HSI system includes a framework to build the proposed HSI from scratch. This framework decreases the complexity of building an HSI device as well as the processing time. It contains every needed 3D model, a calibration method, the image acquisition software, and the methodology to build and calibrate the proposed HSI device. Therefore, the proposed HSI system is portable, reusable, and lightweight.

3.
Apunts, Med. esport (Internet) ; 57(215): 100390, July - September 2022. tab, graf
Artigo em Inglês | IBECS (Espanha) | ID: ibc-207613

RESUMO

Introduction: The purpose of this study was to compare the most demanding scenarios (MDS) of match-play across five different team sports of the same club (basketball, futsal, handball, rink hockey and soccer) during five different time epochs (30, 60, 120, 180 and 300 s).Material and methodsSixty-five professional male players were monitored across 14 to 17 official matches via a local positioning system. Peak physical demands included total distance, distance, and actions >18 km·h−1 and distance and number of accelerations and decelerations >2 m·s−2. One-way analysis of variance and Tukey post-hoc tests were used to test statistical significance (p <.05), whereas standardized Cohen's effect size and the respective 95% confidence intervals were calculated to detect differences between team sports.ResultsWhile soccer and rink hockey achieved the greatest MDS in total distance, and distance and number of actions >18 km·h−1 during all the time epochs examined, basketball presented the highest peak values in number of accelerations and decelerations >2 m·s−2 during 30-s and 60-s time epochs.ConclusionIn conclusion, the MDS during competition are significantly different across team sports, which can be useful in determining the upper limit threshold for sport-specific training optimisation and return to play purposes. (AU)


Assuntos
Humanos , Masculino , Esportes , Desempenho Atlético/estatística & dados numéricos , Futebol , Basquetebol , Hóquei
5.
Proc (Bayl Univ Med Cent) ; 25(2): 124-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22481841

RESUMO

This case study examined the nutritional behavior and energy balance in an official finisher of a 24-hour ultracycling race. The food and beverages consumed by the cyclist were continuously weighed and recorded to estimate intake of energy, macronutrients, sodium, and caffeine. In addition, during the race, heart rate was continuously monitored. Energy expenditure was assessed using a heart rate-oxygen uptake regression equation obtained previously from a laboratory test. The athlete (39 years, 175.6 cm, 84.2 kg, maximum oxygen uptake, 64 mL/kg/min) cycled during 22 h 22 min, in which he completed 557.3 km with 8760 m of altitude at an average speed of 25.1 km/h. The average heart rate was 131 beats/min. Carbohydrates were the main macronutrient intake (1102 g, 13.1 g/kg); however, intake was below current recommendations. The consumption of protein and fat was 86 g and 91 g, respectively. He ingested 20.7 L (862 mL/h) of fluids, with sport drinks the main fluid used for hydration. Sodium concentration in relation to total fluid intake was 34.0 mmol/L. Caffeine consumption over the race was 231 mg (2.7 mg/kg). During the race, he expended 15,533 kcal. Total energy intake was 5571 kcal, with 4058 (73%) and 1513 (27%) kcal derived from solids and fluids, respectively. The energy balance resulted in an energy deficit of 9915 kcal.

6.
J Int Soc Sports Nutr ; 9(1): 3, 2012 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-22309475

RESUMO

BACKGROUND: Information about behavior of energy intake in ultra-endurance cyclists during a 24-hour team relay race is scarce. The nutritional strategy during such an event is an important factor which athletes should plan carefully before the race. The purpose of this study was to examine and compare the nutritional intake of ultra-endurance cyclists during a 24-hour team relay race with the current nutritional guidelines for endurance events. Additionally, we analyzed the relationship among the nutritional and performance variables. METHODS: Using a observational design, nutritional intake of eight males (mean ± SD: 36.7 ± 4.7 years; 71.6 ± 4.9 kg; 174.6 ± 7.3 cm; BMI 23.5 ± 0.5 kg/m2) participating in a 24-hour team relay cycling race was assessed. All food and fluid intake by athletes were weighed and recorded. Additionally, distance and speed performed by each rider were also recorded. Furthermore, before to the race, all subjects carried out an incremental exercise test to determine two heart rate-VO2 regression equations which were used to estimate the energy expenditure. RESULTS: The mean ingestion of macronutrients during the event was 943 ± 245 g (13.1 ± 4.0 g/kg) of carbohydrates, 174 ± 146 g (2.4 ± 1.9 g/kg) of proteins and 107 ± 56 g (1.5 ± 0.7 g/kg) of lipids, respectively. This amount of nutrients reported an average nutrient intake of 22.8 ± 8.9 MJ which were significantly lower compared with energy expenditure 42.9 ± 6.8 MJ (P = 0.012). Average fluid consumption corresponded to 10497 ± 2654 mL. Mean caffeine ingestion was 142 ± 76 mg. Additionally, there was no relationship between the main nutritional variables (i.e. energy intake, carbohydrates, proteins, fluids and caffeine ingestion) and the main performance variables (i.e. distance and speed). CONCLUSIONS: A 24-hour hours cycling competition in a team relay format elicited high energy demands which were not compensated by energy intake of the athletes despite that dietary consumption of macronutrients did not differ to the nutritional guidelines for longer events.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa