Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Biochim Biophys Acta ; 1863(5): 902-10, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26367802

RESUMO

This contribution describes the phenotypic differences of yeast peroxisome-deficient mutants (pex mutants). In some cases different phenotypes were reported for yeast mutants deleted in the same PEX gene. These differences are most likely related to the marker proteins and methods used to detect peroxisomal remnants. This is especially evident for pex3 and pex19 mutants, where the localization of receptor docking proteins (Pex13, Pex14) resulted in the identification of peroxisomal membrane remnants, which do not contain other peroxisomal membrane proteins, such as the ring proteins Pex2, Pex10 and Pex12. These structures in pex3 and pex19 cells are the template for peroxisome formation upon introduction of the missing gene. Taken together, these data suggest that in all yeast pex mutants analyzed so far peroxisomes are not formed de novo but use membrane remnant structures as a template for peroxisome formation upon reintroduction of the missing gene. The relevance of this model for peroxisomal membrane protein and lipid sorting to peroxisomes is discussed.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Biogênese de Organelas , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Retículo Endoplasmático/química , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Peroxinas , Peroxissomos/química , Plantas/química , Plantas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Leveduras/química , Leveduras/metabolismo
2.
EMBO J ; 30(1): 5-16, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21113128

RESUMO

Pex11 is a key player in peroxisome proliferation, but the molecular mechanisms of its function are still unknown. Here, we show that Pex11 contains a conserved sequence at the N-terminus that can adopt the structure of an amphipathic helix. Using Penicillium chrysogenum Pex11, we show that this amphipathic helix, termed Pex11-Amph, associates with liposomes in vitro. This interaction is especially evident when negatively charged liposomes are used with a phospholipid content resembling that of peroxisomal membranes. Binding of Pex11-Amph to negatively charged membrane vesicles resulted in strong tubulation. This tubulation of vesicles was also observed when the entire soluble N-terminal domain of Pex11 was used. Using mutant peptides, we demonstrate that maintaining the amphipathic properties of Pex11-Amph in conjunction with retaining its α-helical structure are crucial for its function. We show that the membrane remodelling capacity of the amphipathic helix in Pex11 is conserved from yeast to man. Finally, we demonstrate that mutations abolishing the membrane remodelling activity of the Pex11-Amph domain also hamper the function of full-length Pex11 in peroxisome fission in vivo.


Assuntos
Proteínas Fúngicas/metabolismo , Membranas Intracelulares/metabolismo , Lipossomos/metabolismo , Proteínas de Membrana/metabolismo , Penicillium chrysogenum/metabolismo , Peroxissomos/metabolismo , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Membranas Intracelulares/química , Lipossomos/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Penicillium chrysogenum/química , Penicillium chrysogenum/genética , Peroxissomos/química , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Estrutura Secundária de Proteína , Alinhamento de Sequência
3.
Subcell Biochem ; 69: 135-52, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23821147

RESUMO

Peroxisomes are ubiquitous and versatile cell organelles. They consist of a single membrane that encloses a proteinaceous matrix. Conserved functions are fatty acid ß-oxidation and hydrogen peroxide metabolism. In filamentous fungi, many other metabolic functions have been identified. Also, they contain highly specialized peroxisome-derived structures termed Woronin bodies, which have a structural function in plugging septal pores in order to prevent cytoplasmic bleeding of damaged hyphae.In filamentous fungi peroxisomes play key roles in the production of a range of secondary metabolites such as antibiotics. Most likely the atlas of fungal peroxisomal metabolic pathways is still far from complete. Relative recently discovered functions include their role in biotin biosynthesis as well as in the production of several toxins, among which polyketides. Finally, in filamentous fungi peroxisomes are important for development and pathogenesis.In this contribution we present an overview of our current knowledge on fungal peroxisome formation as well as on their functional diversity.


Assuntos
Fungos/metabolismo , Antibacterianos/biossíntese , Biotina/biossíntese , Ácidos Graxos Insaturados/biossíntese , Peróxido de Hidrogênio/metabolismo , Indóis/metabolismo , Policetídeos/metabolismo
4.
Traffic ; 12(7): 925-37, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21507161

RESUMO

Membrane remodeling is an important aspect in organelle biogenesis. We show that different peroxisome membrane proteins that play a role in organelle biogenesis and proliferation (Pex8, Pex10, Pex14, Pex25 and Pex11) are subject to spatiotemporal behavior during organelle development. Using fluorescence microscopy analysis of Hansenula polymorpha dnm1 cells that are blocked in the normal fission process, we show that green fluorescent protein (GFP) fusions of Pex8, Pex10, Pex14 and Pex25 show enhanced fluorescence at the organelle extensions that are formed in budding cells. In contrast, Pex11 fluorescence is enriched at the base of this extension on the mother organelle. A fusion protein of GFP with the transporter Pmp47, used as a control, did not show enhanced fluorescence at any specific region of the organelle. The concentration of specific peroxins at the peroxisome surface was lost upon deletion of PEX11 or the N-terminal domain of Pex11 that is involved in membrane remodeling. Comparable distribution patterns as in dnm1 cells were observed in wild-type cells where Pex8, Pex10, Pex14 and Pex25, but not Pex11, were especially present at newly formed organelles that migrated to the bud. We speculate that peroxin reorganization events result in enhanced levels of peroxins involved in peroxisome biogenesis in nascent organelles.


Assuntos
Proteínas Fúngicas/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Proteínas Fúngicas/genética , Proteínas de Membrana/genética , Modelos Biológicos , Peroxissomos/química , Pichia/genética , Pichia/metabolismo , Pichia/ultraestrutura , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
J Biol Chem ; 287(33): 27380-95, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22733816

RESUMO

Proteins are subject to continuous quality control for optimal proteostasis. The knowledge of peroxisome quality control systems is still in its infancy. Here we show that peroxisomes contain a member of the Lon family of proteases (Pln). We show that Pln is a heptameric protein and acts as an ATP-fueled protease and chaperone. Hence, Pln is the first chaperone identified in fungal peroxisomes. In cells of a PLN deletion strain peroxisomes contain protein aggregates, a major component of which is catalase-peroxidase. We show that this enzyme is sensitive to oxidative damage. The oxidatively damaged, but not the native protein, is a substrate of the Pln protease. Cells of the pln strain contain enhanced levels of catalase-peroxidase protein but reduced catalase-peroxidase enzyme activities. Together with the observation that Pln has chaperone activity in vitro, our data suggest that catalase-peroxidase aggregates accumulate in peroxisomes of pln cells due to the combined absence of Pln protease and chaperone activities.


Assuntos
Endopeptidases Dependentes de ATP/metabolismo , Proteínas Fúngicas/metabolismo , Chaperonas Moleculares/metabolismo , Penicillium chrysogenum/enzimologia , Peroxissomos/enzimologia , Endopeptidases Dependentes de ATP/genética , Catalase/genética , Catalase/metabolismo , Proteínas Fúngicas/genética , Chaperonas Moleculares/genética , Estresse Oxidativo/fisiologia , Penicillium chrysogenum/genética , Peroxissomos/genética
6.
Biochim Biophys Acta ; 1823(7): 1133-41, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22546606

RESUMO

Catalase is sorted to peroxisomes via a C-terminal peroxisomal targeting signal 1 (PTS1), which binds to the receptor protein Pex5. Analysis of the C-terminal sequences of peroxisomal catalases from various species indicated that catalase never contains the typical C-terminal PTS1 tripeptide-SKL, but invariably is sorted to peroxisomes via a non-canonical sorting sequence. We analyzed the relevance of the non-canonical PTS1 of catalase of the yeast Hansenula polymorpha (-SKI). Using isothermal titration microcalorimetry, we show that the affinity of H. polymorpha Pex5 for a peptide containing -SKI at the C-terminus is 8-fold lower relative to a peptide that has a C-terminal -SKL. Fluorescence microscopy indicated that green fluorescent protein containing the -SKI tripeptide (GFP-SKI) has a prolonged residence time in the cytosol compared to GFP containing -SKL. Replacing the -SKI sequence of catalase into -SKL resulted in reduced levels of enzymatically active catalase in whole cell lysates together with the occurrence of catalase protein aggregates in the peroxisomal matrix. Moreover, the cultures showed a reduced growth yield in methanol-limited chemostats. Finally, we show that a mutant catalase variant that is unable to properly fold mislocalizes in protein aggregates in the cytosol. However, by replacing the PTS1 into -SKL the mutant variant accumulates in protein aggregates inside peroxisomes. Based on our findings we propose that the relatively weak PTS1 of catalase is important to allow proper folding of the enzyme prior to import into peroxisomes, thereby preventing the accumulation of catalase protein aggregates in the organelle matrix.


Assuntos
Catalase/química , Catalase/metabolismo , Peroxissomos/enzimologia , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Calorimetria , Catalase/genética , Catalase/ultraestrutura , Citosol/efeitos dos fármacos , Citosol/enzimologia , Proteínas Fúngicas , Proteínas de Fluorescência Verde/metabolismo , Metanol/farmacologia , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos , Peroxissomos/ultraestrutura , Pichia/citologia , Pichia/efeitos dos fármacos , Pichia/enzimologia , Pichia/crescimento & desenvolvimento , Ligação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Transporte Proteico/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Relação Estrutura-Atividade , Fatores de Tempo
7.
Metab Eng ; 18: 36-43, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23608472

RESUMO

Genetic engineering of fungal cell factories mainly focuses on manipulating enzymes of the product pathway or primary metabolism. However, despite the use of strong promoters or strains containing the genes of interest in multiple copies, the desired strongly enhanced enzyme levels are often not obtained. Here we present a novel strategy to improve penicillin biosynthesis by Penicillium chrysogenum by reducing reactive and toxic metabolic by-products, 2-oxoaldehydes. This was achieved by overexpressing the genes encoding glyoxalase I and II, which resulted in a 10% increase in penicillin titers relative to the control strain. The protein levels of two key enzymes of penicillin biosynthesis, isopenicillin N synthase and isopenicillin N acyltransferase, were increased in the glyoxalase transformants, whereas their transcript levels remained unaltered. These results suggest that directed intracellular reduction of 2-oxoaldehydes prolongs the functional lifetime of these enzymes.


Assuntos
Proteínas Fúngicas/biossíntese , Lactoilglutationa Liase/biossíntese , Penicilinas/biossíntese , Penicillium chrysogenum/enzimologia , Proteínas Fúngicas/genética , Dosagem de Genes , Engenharia Genética/métodos , Lactoilglutationa Liase/genética , Penicillium chrysogenum/genética , Penicillium chrysogenum/crescimento & desenvolvimento
8.
Traffic ; 11(2): 175-84, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20015113

RESUMO

Peroxisomes are unique organelles which display properties of autonomous organelles, as they can multiply by fission of pre-existing ones. Peroxisomes, however, can also develop from the endoplasmic reticulum (ER). This process has convincingly been shown in peroxisome-deficient yeast cells, upon reintroduction of the corresponding gene. Whether peroxisomes also are formed from the ER in wild-type cells that contain peroxisomes is still under debate. Also, the existence of vesicular transport pathways between peroxisomes and the ER is still unresolved. Several new proteins and pathways that play a role in peroxisome proliferation have been identified in the last few years. A surprising finding was that proteins well known for their function in mitochondrial fission (Fis1, Dnm1) are responsible for peroxisome fission as well. In this contribution we discuss recent advancements in research on peroxisome proliferation.


Assuntos
Retículo Endoplasmático/metabolismo , Peroxissomos/metabolismo , Animais , Humanos , Modelos Biológicos
9.
Biol Chem ; 393(11): 1247-61, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23109542

RESUMO

Mitofilin proteins are crucial organizers of mitochondrial architecture. They are located in the inner mitochondrial membrane and interact with several protein complexes of the outer membrane, thereby generating contact sites between the two membrane systems of mitochondria. Within the inner membrane, mitofilins are part of hetero-oligomeric protein complexes that have been termed the mitochondrial inner membrane organizing system (MINOS). MINOS integrity is required for the maintenance of the characteristic morphology of the inner mitochondrial membrane, with an inner boundary region closely apposed to the outer membrane and cristae membranes, which form large tubular invaginations that protrude into the mitochondrial matrix and harbor the enzyme complexes of the oxidative phosphorylation machinery. MINOS deficiency comes along with a loss of crista junction structures and the detachment of cristae from the inner boundary membrane. MINOS has been conserved in evolution from unicellular eukaryotes to humans, where alterations of MINOS subunits are associated with multiple pathological conditions.


Assuntos
Sequência Conservada , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Animais , Humanos , Membranas Mitocondriais/química , Modelos Biológicos , Proteínas Musculares/química , Proteínas Musculares/metabolismo
10.
FEMS Yeast Res ; 12(3): 271-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22129301

RESUMO

Hansenula polymorpha is an important yeast in industrial biotechnology. In addition, it is extensively used in fundamental research devoted to unravel the principles of peroxisome biology and nitrate assimilation. Here we present an overview of key components of the genetic toolbox for H. polymorpha. In addition, we present new selection markers that we recently implemented in H. polymorpha. We describe novel strategies for the efficient creation of targeted gene deletions and integrations in H. polymorpha. For this, we generated a yku80 mutant, deficient in non-homologous end joining, resulting in strongly enhanced efficiency of gene targeting relative to the parental strain. Finally, we show the implementation of Gateway technology and a single-step PCR strategy to create deletions in H. polymorpha.


Assuntos
Biotecnologia/métodos , Proteínas Fúngicas/genética , Vetores Genéticos/genética , Pichia/genética , Recombinação Genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Expressão Gênica , Engenharia Genética/métodos , Plasmídeos/genética , Reação em Cadeia da Polimerase
11.
Biochim Biophys Acta ; 1803(9): 1038-42, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20359504

RESUMO

Pyruvate carboxylase is a highly conserved enzyme that functions in replenishing the tricarboxylic acid cycle with oxaloacetate. In the yeast Hansenulapolymorpha, the pyruvate carboxylase protein is also required for import and assembly of the peroxisomal enzyme alcohol oxidase. This additional role, which is unrelated to the enzyme activity, represents an example of a special form of multifunctionality called moonlighting. We have performed a detailed site-directed mutagenesis approach to elucidate which region(s) of H. polymorpha pyruvate carboxylase are involved in its second function. This resulted in the identification of three amino acids that are essential for the moonlighting function. Mutating these residues in a single mutant protein fully inactivated the moonlighting function, but not the enzyme activity of pyruvate carboxylase because the strain was prototrophic. A 3D homology model revealed that all three residues are positioned at the side of a TIM barrel where the N-terminal ends of the beta-strands are located. This is a novel observation as the TIM barrel proteins invariably are enzymes and have their catalytic side at the C-terminal end of the beta-sheets. Our finding implies that a TIM barrel fold can also fulfill a non-enzymatic function and that this function can reside at the N-terminal end of the barrel.


Assuntos
Pichia/enzimologia , Piruvato Carboxilase/química , Piruvato Carboxilase/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Ativação Enzimática/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Organismos Geneticamente Modificados , Pichia/genética , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Piruvato Carboxilase/genética , Piruvato Carboxilase/metabolismo , Relação Estrutura-Atividade
12.
Biochim Biophys Acta ; 1803(5): 617-22, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20153784

RESUMO

In budding yeast Saccharomyces cerevisiae, the peroxisomal protein Inp2 is required for inheritance of peroxisomes to the bud, by connecting the organelles to the motor protein Myo2 and the actin cytoskeleton. Recent data suggested that the function of Inp2 may not be conserved in other yeast species. Using in silico analyses we have identified a weakly conserved Inp2-related protein in 18 species of budding yeast and analyzed the role of the identified protein in the methylotrophic yeast Hansenula polymorpha in peroxisome inheritance. Our data show that H. polymorpha Inp2 locates to peroxisomes, interacts with Myo2, and is essential for peroxisome inheritance.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/fisiologia , Peroxissomos/metabolismo , Pichia/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Actinas/metabolismo , Citoesqueleto/metabolismo , Proteínas Fúngicas/genética , Pichia/genética , Pichia/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
13.
Appl Environ Microbiol ; 77(4): 1413-22, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21169429

RESUMO

We have investigated the significance of autophagy in the production of the ß-lactam antibiotic penicillin (PEN) by the filamentous fungus Penicillium chrysogenum. In this fungus PEN production is compartmentalized in the cytosol and in peroxisomes. We demonstrate that under PEN-producing conditions significant amounts of cytosolic and peroxisomal proteins are degraded via autophagy. Morphological analysis, based on electron and fluorescence microscopy, revealed that this phenomenon might contribute to progressive deterioration of late subapical cells. We show that deletion of the P. chrysogenum ortholog of Saccharomyces cerevisiae serine-threonine kinase atg1 results in impairment of autophagy. In P. chrysogenum atg1 cells, a distinct delay in cell degeneration is observed relative to wild-type cells. This phenomenon is associated with an increase in the enzyme levels of the PEN biosynthetic pathway and enhanced production levels of this antibacterial compound.


Assuntos
Autofagia , Penicilinas/biossíntese , Penicillium chrysogenum/fisiologia , Proteínas Serina-Treonina Quinases/genética , Autofagia/genética , Citosol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica , Microscopia de Fluorescência , Penicilinas/metabolismo , Penicillium chrysogenum/enzimologia , Penicillium chrysogenum/genética , Penicillium chrysogenum/metabolismo , Peroxissomos/metabolismo , Reação em Cadeia da Polimerase , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Deleção de Sequência
14.
Curr Opin Cell Biol ; 14(4): 500-5, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12383803

RESUMO

Peroxisome development is a dynamic process that may involve organelle fusion and fission events. Cells contain different types of peroxisomes that vary in protein composition and capacity to incorporate membrane and matrix proteins. The protein import machinery is highly flexible and includes a cycling receptor that passes the peroxisomal membrane.


Assuntos
Peroxissomos/fisiologia , Animais , Proteínas da Matriz Extracelular/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Microcorpos/metabolismo , Microcorpos/ultraestrutura , Modelos Biológicos , Neurospora crassa/genética , Neurospora crassa/metabolismo , Neurospora crassa/ultraestrutura , Penicillium/genética , Penicillium/metabolismo , Penicillium/ultraestrutura , Peroxissomos/química , Peroxissomos/genética , Peroxissomos/ultraestrutura , Transporte Proteico , Proteínas/química , Proteínas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
15.
J Cell Biol ; 174(1): 89-100, 2006 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-16818721

RESUMO

Quiescence is the most common and, arguably, most poorly understood cell cycle state. This is in part because pure populations of quiescent cells are typically difficult to isolate. We report the isolation and characterization of quiescent and nonquiescent cells from stationary-phase (SP) yeast cultures by density-gradient centrifugation. Quiescent cells are dense, unbudded daughter cells formed after glucose exhaustion. They synchronously reenter the mitotic cell cycle, suggesting that they are in a G(0) state. Nonquiescent cells are less dense, heterogeneous, and composed of replicatively older, asynchronous cells that rapidly lose the ability to reproduce. Microscopic and flow cytometric analysis revealed that nonquiescent cells accumulate more reactive oxygen species than quiescent cells, and over 21 d, about half exhibit signs of apoptosis and necrosis. The ability to isolate both quiescent and nonquiescent yeast cells from SP cultures provides a novel, tractable experimental system for studies of quiescence, chronological and replicative aging, apoptosis, and the cell cycle.


Assuntos
Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/isolamento & purificação , Apoptose/fisiologia , Ciclo Celular/fisiologia , Separação Celular/métodos , Células Cultivadas , Centrifugação com Gradiente de Concentração/métodos , Citometria de Fluxo , Glucose/química , Microscopia/métodos , Mitose , Espécies Reativas de Oxigênio/metabolismo , Fase de Repouso do Ciclo Celular/fisiologia , Sensibilidade e Especificidade
16.
FEMS Yeast Res ; 11(8): 603-20, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22093745

RESUMO

Extremely low specific growth rates (below 0.01 h(-1) ) represent a largely unexplored area of microbial physiology. In this study, anaerobic, glucose-limited retentostats were used to analyse physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to cultivation at near-zero specific growth rates. While quiescence is typically investigated as a result of carbon starvation, cells in retentostat are fed by small, but continuous carbon and energy supply. Yeast cells cultivated near-zero specific growth rates, while metabolically active, exhibited characteristics previously associated with quiescence, including accumulation of storage polymers and an increased expression of genes involved in exit from the cell cycle into G(0) . Unexpectedly, analysis of transcriptome data from retentostat and chemostat cultures showed, as specific growth rate was decreased, that quiescence-related transcriptional responses were already set in at specific growth rates above 0.025 h(-1) . These observations stress the need for systematic dissection of physiological responses to slow growth, quiescence, ageing and starvation and indicate that controlled cultivation systems such as retentostats can contribute to this goal. Furthermore, cells in retentostat do not (or hardly) divide while remaining metabolically active, which emulates the physiological status of metazoan post-mitotic cells. We propose retentostat as a powerful cultivation tool to investigate chronological ageing-related processes.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Saccharomyces cerevisiae/fisiologia , Transcriptoma/genética , Anaerobiose , Análise por Conglomerados , Meios de Cultura , Perfilação da Expressão Gênica , Glucose/genética , Glucose/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/ultraestrutura , Fatores de Tempo , Transcrição Gênica
17.
Nature ; 434(7029): 74-9, 2005 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-15744302

RESUMO

Hydrogenosomes are organelles that produce ATP and hydrogen, and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates. Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and metabolically quite different, just like mitochondria where large differences also exist. These differences have led to a continuing debate about the evolutionary origin of hydrogenosomes. Here we show that the hydrogenosomes of the anaerobic ciliate Nyctotherus ovalis, which thrives in the hindgut of cockroaches, have retained a rudimentary genome encoding components of a mitochondrial electron transport chain. Phylogenetic analyses reveal that those proteins cluster with their homologues from aerobic ciliates. In addition, several nucleus-encoded components of the mitochondrial proteome, such as pyruvate dehydrogenase and complex II, were identified. The N. ovalis hydrogenosome is sensitive to inhibitors of mitochondrial complex I and produces succinate as a major metabolic end product--biochemical traits typical of anaerobic mitochondria. The production of hydrogen, together with the presence of a genome encoding respiratory chain components, and biochemical features characteristic of anaerobic mitochondria, identify the N. ovalis organelle as a missing link between mitochondria and hydrogenosomes.


Assuntos
Anaerobiose , Cilióforos/citologia , Cilióforos/metabolismo , Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Animais , Cilióforos/genética , Cilióforos/ultraestrutura , Baratas/parasitologia , DNA Mitocondrial/genética , Transporte de Elétrons , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Genoma , Glucose/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Organelas/efeitos dos fármacos , Organelas/genética , Organelas/metabolismo , Organelas/ultraestrutura , Filogenia , Proteoma
18.
Biotechnol Lett ; 33(10): 1921-31, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21660569

RESUMO

Peroxisomes are ubiquitous organelles characterized by a protein-rich matrix surrounded by a single membrane. In filamentous fungi, peroxisomes are crucial for the primary metabolism of several unusual carbon sources used for growth (e.g. fatty acids), but increasing evidence is presented that emphasize the crucial role of these organelles in the formation of a variety of secondary metabolites. In filamentous fungi, peroxisomes also play a role in development and differentiation whereas specialized peroxisomes, the Woronin bodies, play a structural role in plugging septal pores. The biogenesis of peroxisomes in filamentous fungi involves the function of conserved PEX genes, as well as genes that are unique for these organisms. Peroxisomes are also subject to autophagic degradation, a process that involves ATG genes. The interplay between organelle biogenesis and degradation may serve a quality control function, thereby allowing a continuous rejuvenation of the organelle population in the cells.


Assuntos
Fungos/metabolismo , Penicilinas/biossíntese , Peroxissomos/metabolismo , Penicillium chrysogenum/metabolismo
19.
Traffic ; 9(9): 1471-84, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18513378

RESUMO

We show that Mdv1 and Caf4, two components of the mitochondrial fission machinery in Saccharomyces cerevisiae, also function in peroxisome proliferation. Deletion of MDV1, CAF4 or both, however, had only a minor effect on peroxisome numbers at peroxisome-inducing growth conditions, most likely related to the fact that Vps1--and not Dnm1--is the key player in peroxisome fission in this organism. In contrast, in Hansenula polymorpha, which has only a Dnm1-dependent peroxisome fission machinery, deletion of MDV1 led to a drastic reduction of peroxisome numbers. This phenotype was accompanied by a strong defect in mitochondrial fission. The MDV1 paralog CAF4 is absent in H. polymorpha. In wild-type H. polymorpha, cells Dnm1-mCherry and green fluorescent protein (GFP)-Mdv1 colocalize in spots that associate with both peroxisomes and mitochondria. Furthermore, Fis1 is essential to recruit Mdv1 to the peroxisomal and mitochondrial membrane. However, formation of GFP-Mdv1 spots--and related to this normal organelle fission--is strictly dependent on the presence of Dnm1. In dnm1 cells, GFP-Mdv1 is dispersed over the surface of peroxisomes and mitochondria. Also, in H. polymorpha mdv1 or fis1 cells, the number of Dnm1-GFP spots is strongly reduced. These spots still associate to organelles but are functionally inactive.


Assuntos
Proteínas Fúngicas/fisiologia , Mitocôndrias/fisiologia , Proteínas Mitocondriais/fisiologia , Peroxissomos/fisiologia , Pichia/fisiologia , Sequência de Bases , Dinaminas/genética , Dinaminas/metabolismo , Dinaminas/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Mutação , Peroxissomos/metabolismo , Peroxissomos/ultraestrutura , Pichia/genética , Pichia/metabolismo , Pichia/ultraestrutura , Plasmídeos , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
20.
Biochim Biophys Acta ; 1792(1): 3-13, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19022377

RESUMO

Degradation processes are important for optimal functioning of eukaryotic cells. The two major protein degradation pathways in eukaryotes are the ubiquitin-proteasome pathway and autophagy. This contribution focuses on autophagy. This process is important for survival of cells during nitrogen starvation conditions but also has a house keeping function in removing exhausted, redundant or unwanted cellular components. We present an overview of the molecular mechanism involved in three major autophagy pathways: chaperone mediated autophagy, microautophagy and macroautophagy. Various recent reports indicate that autophagy plays a crucial role in human health and disease. Examples are presented of lysosomal storage diseases and the role of autophagy in cancer, neurodegenerative diseases, defense against pathogens and cell death.


Assuntos
Autofagia/fisiologia , Animais , Morte Celular/fisiologia , Senescência Celular/fisiologia , Citoplasma/fisiologia , Retículo Endoplasmático/fisiologia , Humanos , Infecções/patologia , Doenças por Armazenamento dos Lisossomos/patologia , Mitocôndrias/fisiologia , Modelos Biológicos , Chaperonas Moleculares/fisiologia , Neoplasias/patologia , Degeneração Neural/fisiopatologia , Vacúolos/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa