Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 24(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36421539

RESUMO

We study an air-fluidized granular monolayer composed of plastic spheres which roll on a metallic grid. The air current is adjusted so that the spheres never lose contact with the grid and so that the dynamics may be regarded as pseudo two dimensional (or two dimensional, if the effects of the sphere rolling are not taken into account). We find two surprising continuous transitions, both of them displaying two coexisting phases. Moreover, in all the cases, we found the coexisting phases display a strong energy non-equipartition. In the first transition, at a weak fluidization, a glass phase coexists with a disordered fluid-like phase. In the second transition, a hexagonal crystal coexists with the fluid phase. We analyze, for these two-phase systems, the specific diffusive properties of each phase, as well as the velocity correlations. Surprisingly, we find a glass phase at a very low packing fraction and for a wide range of granular temperatures. Both phases are also characterized by strong anticorrelated velocities upon a collision. Thus, the dynamics observed for this quasi two-dimensional system unveil phase transitions with peculiar properties, very different from the predicted behavior in well-know theories for their equilibrium counterparts.

2.
Phys Rev Lett ; 119(14): 148001, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053323

RESUMO

Under certain conditions, two samples of fluid at different initial temperatures present a counterintuitive behavior known as the Mpemba effect: it is the hotter system that cools sooner. Here, we show that the Mpemba effect is present in granular fluids, both in uniformly heated and in freely cooling systems. In both cases, the system remains homogeneous, and no phase transition is present. Analytical quantitative predictions are given for how differently the system must be initially prepared to observe the Mpemba effect, the theoretical predictions being confirmed by both molecular dynamics and Monte Carlo simulations. Possible implications of our analysis for other systems are also discussed.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(4 Pt 1): 041303, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19518220

RESUMO

Transport coefficients associated with the mass flux of impurities immersed in a moderately dense granular gas of hard disks or spheres described by the inelastic Enskog equation are obtained by means of the Chapman-Enskog expansion. The transport coefficients are determined as the solutions of a set of coupled linear integral equations recently derived for polydisperse granular mixtures [Garzó, Phys. Rev. E 76, 031304 (2007)]. With the objective of obtaining theoretical expressions for the transport coefficients that are sufficiently accurate for highly inelastic collisions, we solve the above integral equations by using the second Sonine approximation. As a complementary route, we numerically solve by means of the direct simulation Monte Carlo method (DSMC) the inelastic Enskog equation to get the kinetic diffusion coefficient D0 for two and three dimensions. We have observed in all our simulations that the disagreement, for arbitrarily large inelasticity, in the values of both solutions (DSMC and second Sonine approximation) is less than 4%. Moreover, we show that the second Sonine approximation to D0 yields a dramatic improvement (up to 50%) over the first Sonine approximation for impurity particles lighter than the surrounding gas and in the range of large inelasticity. The results reported in this paper are of direct application in important problems in granular flows, such as segregation driven by gravity and a thermal gradient. We analyze here the segregation criteria that result from our theoretical expressions of the transport coefficients.

4.
Phys Rev E ; 100(4-2): 049901, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31770909

RESUMO

This corrects the article DOI: 10.1103/PhysRevE.96.052901.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(6 Pt 1): 061306, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17677254

RESUMO

Granular gaseous mixtures under rapid flow conditions are usually modeled as a multicomponent system of smooth inelastic hard disks (two dimensions) or spheres (three dimensions) with constant coefficients of normal restitution alpha{ij}. In the low density regime an adequate framework is provided by the set of coupled inelastic Boltzmann equations. Due to the intricacy of the inelastic Boltzmann collision operator, in this paper we propose a simpler model of elastic hard disks or spheres subject to the action of an effective drag force, which mimics the effect of dissipation present in the original granular gas. For each collision term ij, the model has two parameters: a dimensionless factor beta{ij} modifying the collision rate of the elastic hard spheres, and the drag coefficient zeta{ij}. Both parameters are determined by requiring that the model reproduces the collisional transfers of momentum and energy of the true inelastic Boltzmann operator, yielding beta{ij}=(1+alpha{ij})2 and zeta{ij} proportional, variant1-alpha{ij}/{2}, where the proportionality constant is a function of the partial densities, velocities, and temperatures of species i and j. The Navier-Stokes transport coefficients for a binary mixture are obtained from the model by application of the Chapman-Enskog method. The three coefficients associated with the mass flux are the same as those obtained from the inelastic Boltzmann equation, while the remaining four transport coefficients show a general good agreement, especially in the case of the thermal conductivity. The discrepancies between both descriptions are seen to be similar to those found for monocomponent gases. Finally, the approximate decomposition of the inelastic Boltzmann collision operator is exploited to construct a model kinetic equation for granular mixtures as a direct extension of a known kinetic model for elastic collisions.

6.
Phys Rev E ; 96(5-1): 052901, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29347772

RESUMO

The dynamical properties of a tracer or impurity particle immersed in a host gas of inelastic and rough hard spheres in the homogeneous cooling state is studied. Specifically, the breakdown of energy equipartition as characterized by the tracer/host ratios of translational and rotational temperatures is analyzed by exploring a wide spectrum of values of the control parameters of the system (masses, moments of inertia, sizes, and coefficients of restitution). Three complementary approaches are considered. On the theoretical side, the Boltzmann and Boltzmann-Lorentz equations (both assuming the molecular chaos ansatz) are solved by means of a multitemperature Maxwellian approximation for the velocity distribution functions. This allows us to obtain explicit analytical expressions for the temperature ratios. On the computational side, two different techniques are used. First, the kinetic equations are numerically solved by the direct simulation Monte Carlo (DSMC) method. Second, molecular dynamics simulations for dilute gases are performed. Comparison between theory and simulations shows a general good agreement. This means that (i) the impact of the molecular chaos ansatz on the temperature ratios is not significant (except at high inelasticities and/or big impurities) and (ii) the simple Maxwellian approximation yields quite reliable predictions.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 1): 021308, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22463203

RESUMO

A recent segregation criterion [Phys. Rev. E 78, 020301(R) (2008)] based on the thermal diffusion factor Λ of an intruder in a heated granular gas described by the inelastic Enskog equation is revisited. The sign of Λ provides a criterion for the transition between the Brazil-nut effect (BNE) and the reverse Brazil-nut effect (RBNE). The present theory incorporates two extra ingredients not accounted for by the previous theoretical attempt. First, the theory is based upon the second Sonine approximation to the transport coefficients of the mass flux of the intruder. Second, the dependence of the temperature ratio (intruder temperature over that of the host granular gas) on the solid volume fraction is taken into account in the first and second Sonine approximations. In order to check the accuracy of the Sonine approximation considered, the Enskog equation is also numerically solved by means of the direct simulation Monte Carlo method to get the kinetic diffusion coefficient D(0). The comparison between theory and simulation shows that the second Sonine approximation to D(0) yields an improvement over the first Sonine approximation when the intruder is lighter than the gas particles in the range of large inelasticity. With respect to the form of the phase diagrams for the BNE-RBNE transition, the kinetic theory results for the factor Λ indicate that while the form of these diagrams depends sensitively on the order of the Sonine approximation considered when gravity is absent, no significant differences between both Sonine solutions appear in the opposite limit (gravity dominates the thermal gradient). In the former case (no gravity), the first Sonine approximation overestimates both the RBNE region and the influence of dissipation on thermal diffusion segregation.


Assuntos
Coloides/química , Difusão , Gases/química , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Temperatura Alta , Pressão
8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(2 Pt 1): 021302, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21405838

RESUMO

In a recent paper [F. Vega Reyes et al., Phys. Rev. Lett. 104, 028001 (2010)] we presented a preliminary description of a special class of steady Couette flows in dilute granular gases. In all flows of this class the viscous heating is exactly balanced by inelastic cooling. This yields a uniform heat flux and a linear relationship between the local temperature and flow velocity. The class (referred to as the LTu class) includes the Fourier flow of ordinary gases and the simple shear flow of granular gases as special cases. In the present paper we provide further support for this class of Couette flows by following four different routes, two of them being theoretical (Grad's moment method of the Boltzmann equation and exact solution of a kinetic model) and the other two being computational (molecular dynamics and Monte Carlo simulations of the Boltzmann equation). Comparison between theory and simulations shows a very good agreement for the non-Newtonian rheological properties, even for quite strong inelasticity, and a good agreement for the heat flux coefficients in the case of Grad's method, the agreement being only qualitative in the case of the kinetic model.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa