Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069364

RESUMO

Breast cancer is the most common type of cancer in women. Although current treatments can increase patient survival, they are rarely curative when the disease is advanced (metastasis). Therefore, there is an urgent need to develop new cytotoxic drugs with a high selectivity toward cancer cells. Since repurposing approved drugs for cancer therapy has been a successful strategy in recent years, in this study, we screened a library of antiviral piperazine-derived compounds as anticancer agents. The compounds included a piperazine ring and aryl urea functions, which are privileged structures present in several anti-breast cancer drugs. The selective cytotoxic activity of a set of thirty-four 4-acyl-2-substituted piperazine urea derivatives against MCF7 breast cancer cells and MCF 10A normal breast cells was determined. Compounds 31, 32, 35, and 37 showed high selective anticancer activity against breast cancer cells and were also tested against another common type of cancer, non-small cell lung cancer (A549 lung cancer cells versus MRC-5 lung normal cells). Compounds 35 and 37 also showed selectivity against lung cancer cells. These results suggest that compounds 35 and 37 may be promising hit compounds for the development of new anticancer agents.


Assuntos
Antineoplásicos , Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Reposicionamento de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/química , Piperazina/farmacologia , Piperazina/química , Ureia/farmacologia , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Estrutura Molecular , Células MCF-7
2.
Bioorg Chem ; 114: 105095, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34175724

RESUMO

Nowadays there is not an effective drug for the treatment of infections caused by human adenovirus (HAdV) which supposes a clinical challenge, especially for paediatric and immunosuppressed patients. Here, we describe the design, synthesis and biological evaluation as anti-adenovirus agents of a new library (57 compounds) of diester, monoester and triazole derivatives based on 3-amino-1,2-propanediol skeleton. Seven compounds (17, 20, 26, 34, 44, 60 and 66) were selected based on their high anti-HAdV activity at low micromolar concentration (IC50 from 2.47 to 5.75 µM) and low cytotoxicity (CC50 from 28.70 to >200 µM). In addition, our mechanistic assays revealed that compounds 20 and 44 might be targeting specifically the HAdV DNA replication process, and compound 66 would be targeting HAdV E1A mRNA transcription. For compounds 17, 20, 34 and 60, the mechanism of action seems to be associated with later steps after HAdV DNA replication.


Assuntos
Adenoviridae/efeitos dos fármacos , Antivirais/farmacologia , Desenho de Fármacos , Propanolaminas/farmacologia , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Propanolaminas/síntese química , Propanolaminas/química , Relação Estrutura-Atividade
3.
Bioorg Med Chem Lett ; 30(18): 127411, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717617

RESUMO

A. baumannii is one of the most important multidrug-resistant microorganisms in hospital units. It is resistant to many classes of antibiotics and the development of new therapeutic strategies is necessary. The aim of this study was to evaluate the antibacterial activity of a set of piperazine-derived thioureas against 13 clinical strains of colistin-resistant A. baumannii. Six derivatives were identified to inhibit bacterial growth of 46% of the A. baumannii strains at low micromolar concentrations (Minimum Inhibitory Concentration from 1.56 to 6.25 µM). A common structural feature in most active compounds was the presence of a 3,5-bis-trifluoromethyl phenyl ring at the thiourea function. In addition, the ability of the compounds to inhibit production of nitric oxide (NO) was examined in RAW 264.7 murine macrophages, highlighting the potential of piperazine-derived thioureas as promising scaffolds for the design of new combined anti-bacterial/anti-inflammatory agents.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/síntese química , Anti-Inflamatórios/síntese química , Colistina/farmacologia , Piperazinas/química , Tioureia/síntese química , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Óxido Nítrico/metabolismo , Células RAW 264.7 , Relação Estrutura-Atividade , Tioureia/farmacologia
4.
Drug Dev Res ; 79(8): 426-436, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30375672

RESUMO

Preclinical Research & Development Several clinically useful anticancer drugs selectively kill cancer cells by inducing DNA damage; the genomic instability and DNA repair defects of cancer cells make them more vulnerable than normal cells to the cytotoxicity of DNA-damaging agents. Because epoxide-containing compounds can induce DNA damage, we have used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to evaluate the selective cytotoxicity of three epoxyalkyl galactopyranosides against A549 lung cancer cells and MRC-5 lung normal cells. Compound (2S,3S)-2,3-epoxydecyl 4,6-O-(S)-benzylidene-ß-d-galactopyranoside (EDBGP) showed the highest selective anticancer activity and was selected for mechanistic studies. After observing that EDBGP induced cellular DNA damage (comet assay), we found that cells deficient in nucleotide excision repair were hypersensitive to the cytotoxicity of this compound; this suggests that EDBGP may induce bulky DNA adducts. EDBGP did not inhibit glycolysis (glucose consumption and lactate production). Pretreatment of lung cancer cells with several antioxidants did not reduce the cytotoxicity of EDBGP, thereby indicating that reactive oxygen species do not participate in the anticancer activity of this compound. Finally, EDBGP was screened against a panel of cancer cells and normal cells from several tissues, including three genetically modified skin fibroblasts with increasing degree of malignancy. Our results suggest that epoxyalkyl galactopyranosides are promising lead compounds for the development of new anticancer agents.


Assuntos
Citotoxinas/química , Dano ao DNA/efeitos dos fármacos , Galactose/química , Galactose/toxicidade , Células A549 , Animais , Células CHO , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cricetulus , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Feminino , Células HCT116 , Células HL-60 , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Masculino
5.
J Med Chem ; 64(8): 4312-4332, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33843223

RESUMO

The G-protein coupled receptors (GPCRs) activated by free fatty acids (FFAs) have emerged as new and exciting drug targets, due to their plausible translation from pharmacology to medicines. This perspective aims to report recent research about GPR120/FFAR4 and its involvement in several diseases, including cancer, inflammatory conditions, and central nervous system disorders. The focus is to highlight the importance of GPR120 in Type 2 diabetes mellitus (T2DM). GPR120 agonists, useful in T2DM drug discovery, have been widely explored from a structure-activity relationship point of view. Since the identification of the first reported synthetic agonist TUG-891, the research has paved the way for the development of TUG-based molecules as well as new and different chemical entities. These molecules might represent the starting point for the future discovery of GPR120 agonists as antidiabetic drugs.


Assuntos
Descoberta de Drogas , Hipoglicemiantes/química , Fenilpropionatos/química , Receptores Acoplados a Proteínas G/agonistas , Adipogenia , Animais , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/uso terapêutico , Ligantes , Camundongos , Fenilpropionatos/metabolismo , Fenilpropionatos/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/metabolismo , Sulfonamidas/uso terapêutico
6.
Biomedicines ; 10(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35052721

RESUMO

We recently screened a series of new aziridines ß-D-galactopyranoside derivatives for selective anticancer activity and identified 2-methyl-2,3-[N-(4-methylbenzenesulfonyl)imino]propyl 2,3-di-O-benzyl-4,6-O-(S)-benzylidene-ß-D-galactopyranoside (AzGalp) as the most promising compound. In this article, we explore the possible mechanisms involved in the cytotoxicity of this aziridine and evaluate its selective anticancer activity using cancer cells and normal cells from a variety of tissues. Our data show that AzGalp induces DNA damage (comet assay). Cells deficient in the nucleotide excision repair (NER) pathway were hypersensitive to the cytotoxicity of this compound. These results suggest that AzGalp induces bulky DNA adducts, and that cancer cells lacking a functional NER pathway may be particularly vulnerable to the anticancer effects of this aziridine. Several experiments revealed that neither the generation of oxidative stress nor the inhibition of glycolysis played a significant role in the cytotoxicity of AzGalp. Combinations of AzGalp with oxaliplatin or 5-fluorouracil slightly improved the ability of both anticancer drugs to selectively kill cancer cells. AzGalp also showed selective cytotoxicity against a panel of malignant cells versus normal cells; the highest selectivity was observed for two acute promyelocytic leukemia cell lines. Additional preclinical studies are necessary to evaluate the anticancer potential of AzGalp.

7.
ACS Infect Dis ; 7(6): 1433-1444, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33073569

RESUMO

Over the years, human adenovirus (HAdV) has progressively been recognized as a significant viral pathogen. Traditionally associated with self-limited respiratory, gastrointestinal, and conjunctival infections, mainly in immunocompromised patients, HAdV is currently considered to be a pathogen presenting significant morbidity and mortality in both immunosuppressed and otherwise healthy individuals. Currently available therapeutic options are limited because of their lack of effectivity and related side effects. In this context, there is an urgent need to develop effective anti-HAdV drugs with suitable therapeutic indexes. In this work, we identified new serinol-derived benzoic acid esters as novel scaffolds for the inhibition of HAdV infections. A set of 38 compounds were designed and synthesized, and their antiviral activity and cytotoxicity were evaluated. Four compounds (13, 14, 27, and 32) inhibited HAdV infection at low micromolar concentrations (2.82-5.35 µM). Their half maximal inhibitory concentration (IC50) values were lower compared to that of cidofovir, the current drug of choice. All compounds significantly reduced the HAdV DNA replication process, while they did not block any step of the viral entry. Our results showed that compounds 13, 14, and 32 seem to be targeting the expression of the E1A early gene. Moreover, all four derivatives demonstrated a significant inhibition of human cytomegalovirus (HCMV) DNA replication. This new scaffold may represent a potential tool useful for the development of effective anti-HAdV drugs.


Assuntos
Infecções por Adenoviridae , Ácido Benzoico , Infecções por Adenoviridae/tratamento farmacológico , Ésteres , Humanos , Propanolaminas , Propilenoglicóis
8.
Eur J Med Chem ; 185: 111840, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31711794

RESUMO

In recent years, human adenovirus (HAdV) infections have shown a high clinical impact in both immunosuppressed and immunocompetent patients. The research into specific antiviral drugs for the treatment of HAdV infections in immunocompromised patients constitutes a principal objective for medicinal chemistry due to the lack of any specific secure drug to treat these infections. In this study, we report a small-molecule library (67 compounds) designed from an optimization process of piperazine-derived urea privileged structures and their biological evaluation: antiviral activity and cytotoxicity. The active compounds selected were further evaluated to gain mechanistic understanding for their inhibition. Twelve derivatives were identified that inhibited HAdV infections at nanomolar and low micromolar concentrations (IC50 from 0.6 to 5.1 µM) with low cytotoxicity. In addition, our mechanistic assays suggested differences in the way the derivatives exert their anti-HAdV activity targeting transcription, DNA replication and later steps in the HAdV replication cycle. Furthermore, eight of the 12 studied derivatives blocked human cytomegalovirus (HCMV) DNA replication at low micromolar concentrations. The data provided herein indicates that the 12 thiourea/urea piperazine derivatives studied may represent potential lead compounds for clinical evaluation and development of new anti-HAdV drugs.


Assuntos
Adenovírus Humanos/efeitos dos fármacos , Antivirais/farmacologia , Piperazinas/farmacologia , Ureia/farmacologia , Células A549 , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/química , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
9.
J Med Chem ; 59(11): 5432-48, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27195951

RESUMO

The search for human adenovirus (HAdV)-specific antiviral drugs for the treatment of HAdV infections in immunocompromised patients continues to be a challenging goal for medicinal chemistry. Here, we report the synthesis, biological evaluation, and structure-activity relationships of a small molecules library. We have identified six phenylpiperazine derivatives that significantly inhibited HAdV infection. These six compounds showed the capacity to block HAdV and, in addition, human cytomegalovirus (HCMV) replications at low micromolar concentration, with little or no cytotoxicity. On the basis of our biological studies, these molecules block HAdV and HCMV infections in different phases of their life cycle, providing potential candidates for the development of a new family of antiviral drugs for the treatment of infections by DNA viruses.


Assuntos
Infecções por Adenovirus Humanos/tratamento farmacológico , Adenovírus Humanos/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa