Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Therm Biol ; 121: 103826, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520770

RESUMO

OBJECTIVES: The effectiveness of normal physiological thermoregulation complicates differentiation between pathologic changes in medical thermography associated with peripheral artery disease and a number of other clinical conditions. In this study we investigate a number of potential confounding factors to the thermal recovery rate after active limb cooling, with the main focus on age and sex. APPROACH: The source data consists of 53 healthy individuals with no diagnosed cardiovascular disease or reported symptoms and with a mean age of 38.4 (± 12.1) years. The sample population was further divided into male (N = 14) and female groups (N = 39). The thermal recovery time was measured using two thermal cameras from both lower limbs on plantar and dorsal sides. The active cooling was achieved using moldable cold pads placed on the plantar and dorsal side of the lower limb. The recovery was measured until the temperature had reached a stable level. The recovery time was determined from an exponential fit to the measured data. RESULTS: The correlation between the thermal recovery time constant and age varied from low to moderate linear correlation (0.31 ≤ ⍴ ≤ 70), depending on the inspected region of interest, with a higher statistically significant correlation in the medial regions. The contralateral limb temperature differences or the thermal time constants did not have statistically significant differences between the male and female sexes. Further, the secondary metrics such as participant's body mass, body-mass index, or systolic blood pressure had low or no correlation with the thermal recovery time in the study group. CONCLUSION: The thermal recovery time constant after active cooling appears as a relatively independent metric from the majority of the measured potential confounding factors. Age should be accounted for when performing thermal recovery measurements. However, dynamic thermal imaging and its methodologies require further research and exploration.


Assuntos
Regulação da Temperatura Corporal , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Temperatura Baixa , Termografia/métodos , Extremidade Inferior/fisiologia
2.
J Therm Biol ; 112: 103467, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36796912

RESUMO

OBJECTIVES: Current chronic limb threatening ischemia (CLTI) diagnostics require expensive equipment, using ionizing radiation or contrast agents, or summative surrogate methods lacking in spatial information. Our aim is to develop and improve contactless, non-ionizing and cost-effective diagnostic methods for CLTI assessment with high spatial accuracy by utilizing dynamic thermal imaging and the angiosome concept. APPROACH: Dynamic thermal imaging test protocol was suggested and implemented with a number of computational parameters. Pilot data was measured from 3 healthy young subjects, 4 peripheral artery disease (PAD) patients and 4 CLTI patients. The protocol consists of clinical reference measurements, including ankle- and toe-brachial indices (ABI, TBI), and a modified patient bed for hydrostatic and thermal modulation tests. The data was analyzed using bivariate correlation. RESULTS: The thermal recovery time constant was on average higher for the PAD (88%) and CLTI (83%) groups with respect to the healthy young subjects. The contralateral symmetry was high for the healthy young group and low for the CLTI group. The recovery time constants showed high negative correlation to TBI (ρ = -0.73) and ABI (ρ = -0.60). The relation of these clinical parameters to the hydrostatic response and absolute temperatures (|ρ|<0.3) remained unclear. CONCLUSION: The lack of correlation for absolute temperatures or their contralateral differences with the clinical status, ABI and TBI disputes their use in CLTI diagnostics. Thermal modulation tests tend to augment the signs of thermoregulation deficiencies and accordingly high correlations were found with all reference metrics. The method is promising for establishing the connection between impaired perfusion and thermography. The hydrostatic modulation test requires more research with stricter test conditions.


Assuntos
Isquemia Crônica Crítica de Membro , Doença Arterial Periférica , Humanos , Isquemia/diagnóstico por imagem , Extremidade Inferior/irrigação sanguínea , Doença Arterial Periférica/diagnóstico por imagem , Tornozelo , Fatores de Risco , Estudos Retrospectivos
3.
J Clin Monit Comput ; 37(1): 45-53, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35394583

RESUMO

To evaluate the accuracy of heart rate variability (HRV) parameters obtained with a wrist-worn photoplethysmography (PPG) monitor in patients recovering from minimally invasive colon resection to investigate whether PPG has potential in postoperative patient monitoring. 31 patients were monitored for three days or until discharge or reoperation using a wrist-worn PPG monitor (PulseOn, Finland) with a Holter monitor (Faros 360, Bittium Biosignals, Finland) as a reference measurement device. Beat-to-beat intervals (BBI) and HRV information collected by PPG were compared with RR intervals (RRI) and HRV obtained from the ECG reference after removing artefacts and ectopic beats. The beat-to-beat mean error (ME) and mean absolute error (MAE) of good quality heartbeat intervals obtained by wrist PPG were estimated as - 1.34 ms and 10.4 ms respectively. A significant variation in the accuracy of the HRV parameters was found. In the time domain, SDNN (9.11%), TRI (11.4%) and TINN (11.1%) were estimated with low relative MAE, while RMSSD (34.3%), pNN50 (139%) and NN50 (188%) had higher errors. The logarithmic parameters in the frequency domain (VLF Log, LF Log and HF Log) exhibited the lowest relative error, and for non-linear parameters, SD2 (7.5%), DFA α1 (8.25%) and DFA α2 (4.71%) were calculated much more accurately than SD1 (34.3%). The wrist PPG shows some potential for use in a clinical setting. The accuracy of several HRV parameters analyzed post hoc was found sufficient to be used in further studies concerning postoperative recovery of patients undergoing laparoscopic colon resection, although there were large errors in many common HRV parameters such as RMSSD, pNN50 and NN50, rendering them unusable.ClinicalTrials.gov Identifier: NCT04996511, August 9, 2021, retrospectively registered.


Assuntos
Fotopletismografia , Punho , Humanos , Frequência Cardíaca/fisiologia , Eletrocardiografia , Eletrocardiografia Ambulatorial , Colo
4.
Exp Mol Pathol ; 125: 104759, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35337806

RESUMO

Pathological gross examination of breast carcinoma samples is sometimes laborious. A tissue pre-mapping method could indicate neoplastic areas to the pathologist and enable focused sampling. Differential Mobility Spectrometry (DMS) is a rapid and affordable technology for complex gas mixture analysis. We present an automated tissue laser analysis system for imaging approaches (iATLAS), which utilizes a computer-controlled laser evaporator unit coupled with a DMS gas analyzer. The system is demonstrated in the classification of porcine tissue samples and three human breast carcinomas. Tissue samples from eighteen landrace pigs were classified with the system based on a pre-designed matrix (spatial resolution 1-3 mm). The smoke samples were analyzed with DMS, and tissue classification was performed with several machine learning approaches. Porcine skeletal muscle (n = 1030), adipose tissue (n = 1329), normal breast tissue (n = 258), bone (n = 680), and liver (n = 264) were identified with 86% cross-validation (CV) accuracy with a convolutional neural network (CNN) model. Further, a panel tissue that comprised all five tissue types was applied as an independent validation dataset. In this test, 82% classification accuracy with CNN was achieved. An analogous procedure was applied to demonstrate the feasibility of iATLAS in breast cancer imaging according to 1) macroscopically and 2) microscopically annotated data with 10-fold CV and SVM (radial kernel). We reached a classification accuracy of 94%, specificity of 94%, and sensitivity of 93% with the macroscopically annotated data from three breast cancer specimens. The microscopic annotation was applicable to two specimens. For the first specimen, the classification accuracy was 84% (specificity 88% and sensitivity 77%). For the second, the classification accuracy was 72% (specificity 88% and sensitivity 24%). This study presents a promising method for automated tissue imaging in an animal model and lays foundation for breast cancer imaging.


Assuntos
Neoplasias da Mama , Mama , Animais , Mama/patologia , Neoplasias da Mama/patologia , Feminino , Humanos , Espectrometria de Mobilidade Iônica , Lasers , Análise Espectral , Suínos
5.
Biomed Eng Online ; 21(1): 54, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927665

RESUMO

BACKGROUND: Measuring the respiratory rate is usually associated with discomfort for the patient due to contact sensors or a high time demand for healthcare personnel manually counting it. METHODS: In this paper, two methods for the continuous extraction of the respiratory rate from unobtrusive ballistocardiography signals are introduced. The Hilbert transform is used to generate an amplitude-invariant phase signal in-line with the respiratory rate. The respiratory rate can then be estimated, first, by using a simple peak detection, and second, by differentiation. RESULTS: By analysis of a sleep laboratory data set consisting of nine records of healthy individuals lasting more than 63 h and including more than 59,000 breaths, a mean absolute error of as low as 0.7 BPM for both methods was achieved. CONCLUSION: The results encourage further assessment for hospitalised patients and for home-care applications especially with patients suffering from diseases of the respiratory system like COPD or sleep apnoea.


Assuntos
Balistocardiografia , Síndromes da Apneia do Sono , Algoritmos , Balistocardiografia/métodos , Frequência Cardíaca , Humanos , Respiração , Taxa Respiratória , Processamento de Sinais Assistido por Computador , Síndromes da Apneia do Sono/diagnóstico
6.
Exp Mol Pathol ; 117: 104526, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32888958

RESUMO

Pathologic examination of clinical tissue samples is time consuming and often does not involve the comprehensive analysis of the whole specimen. Automated tissue analysis systems have potential to make the workflow of a pathologist more efficient and to support in clinical decision-making. So far, these systems have been based on application of mass spectrometry imaging (MSI). MSI provides high fidelity and the results in tissue identification are promising. However, the high cost and need for maintenance limit the adoption of MSI in the clinical setting. Thus, there is a need for new innovations in the field of pathological tissue imaging. In this study, we show that differential ion mobility spectrometry (DMS) is a viable option in tissue imaging. We demonstrate that a DMS-driven solution performs with up to 92% accuracy in differentiating between two grossly distinct animal tissues. In addition, our model is able to classify the correct tissue with 81% accuracy in an eight-class setting. The DMS-based system is a significant innovation in a field dominated by mass-spectrometry-based solutions. By developing the presented platform further, DMS technology could be a cost-effective and helpful tool for automated pathological analysis.


Assuntos
Tomada de Decisão Clínica , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Imagem Molecular/métodos , Automação , Humanos , Manejo de Espécimes
7.
Sensors (Basel) ; 18(6)2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29795007

RESUMO

Respiration rate (RR) provides useful information for assessing the status of a patient. We propose RR estimation based on photoplethysmography (PPG) because the blood perfusion dynamics are known to carry information on breathing, as respiration-induced modulations in the PPG signal. We studied the use of amplitude variability of transmittance mode finger PPG signal in RR estimation by comparing four time-frequency (TF) representation methods of the signal cascaded with a particle filter. The TF methods compared were short-time Fourier transform (STFT) and three types of synchrosqueezing methods. The public VORTAL database was used in this study. The results indicate that the advanced frequency reallocation methods based on synchrosqueezing approach may present improvement over linear methods, such as STFT. The best results were achieved using wavelet synchrosqueezing transform, having a mean absolute error and median error of 2.33 and 1.15 breaths per minute, respectively. Synchrosqueezing methods were generally more accurate than STFT on most of the subjects when particle filtering was applied. While TF analysis combined with particle filtering is a promising alternative for real-time estimation of RR, artefacts and non-respiration-related frequency components remain problematic and impose requirements for further studies in the areas of signal processing algorithms an PPG instrumentation.


Assuntos
Teorema de Bayes , Fotopletismografia/métodos , Respiração , Taxa Respiratória/fisiologia , Algoritmos , Análise de Fourier , Frequência Cardíaca/fisiologia , Humanos , Modelos Teóricos , Processamento de Sinais Assistido por Computador , Análise de Ondaletas
8.
Sensors (Basel) ; 18(6)2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848952

RESUMO

The functionality of three dry electrocardiogram electrode constructions was evaluated by measuring canine heart rate during four different behaviors: Standing, sitting, lying and walking. The testing was repeated (n = 9) in each of the 36 scenarios with three dogs. Two of the electrodes were constructed with spring-loaded test pins while the third electrode was a molded polymer electrode with Ag/AgCl coating. During the measurement, a specifically designed harness was used to attach the electrodes to the dogs. The performance of the electrodes was evaluated and compared in terms of heartbeat detection coverage. The effect on the respective heart rate coverage was studied by computing the heart rate coverage from the measured electrocardiogram signal using a pattern-matching algorithm to extract the R-peaks and further the beat-to-beat heart rate. The results show that the overall coverage ratios regarding the electrodes varied between 45⁻95% in four different activity modes. The lowest coverage was for lying and walking and the highest was for standing and sitting.


Assuntos
Eletrodos , Frequência Cardíaca/fisiologia , Monitorização Fisiológica/métodos , Algoritmos , Animais , Cães , Eletrocardiografia , Humanos
9.
J Clin Monit Comput ; 32(1): 13-22, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28105538

RESUMO

Intermittent non-invasive blood pressure measurement with tourniquets is slow, can cause nerve and skin damage, and interferes with other measurements. Invasive measurement cannot be safely used in all conditions. Modified arterial tonometry may be an alternative for fast and continuous measurement. Our aim was to compare arterial tonometry sensor (BPro®) with invasive blood pressure measurement to clarify whether it could be utilized in the postoperative setting. 28 patients who underwent elective surgery requiring arterial cannulation were analyzed. Patients were monitored post-operatively for 2 h with standard invasive monitoring and with a study device comprising an arterial tonometry sensor (BPro®) added with a three-dimensional accelerometer to investigate the potential impact of movement. Recordings were collected electronically. The results revealed inaccurate readings in method comparison between the devices based on recommendations by Association for the Advancement of Medical Instrumentation (AAMI). On a Bland-Altman plot, the bias and precision between these two methods was 19.8 ± 16.7 (Limits of agreement - 20.1 to 59.6) mmHg, Spearman correlation coefficient r = 0.61. For diastolic pressure, the difference was 4.8 ± 7.7 (LoA - 14.1 to 23.6) mmHg (r = 0.72), and for mean arterial pressure it was 11.18 ± 11.1 (LoA - 12.1 to 34.2) mmHg (r = 0.642). Our study revealed inaccurate agreement (AAMI) between the two methods when measuring systolic and mean blood pressures during post-operative care. The readings for diastolic pressures were inside the limits recommended by AAMI. Movement increased the failure rate significantly (p < 0.001). Thus, arterial tonometry is not an appropriate replacement for invasive blood pressure measurement in these patients.


Assuntos
Pressão Arterial , Determinação da Pressão Arterial/métodos , Monitores de Pressão Arterial , Cuidados Críticos/métodos , Manometria/métodos , Monitorização Fisiológica/métodos , Artéria Radial/fisiologia , Aceleração , Adulto , Idoso , Idoso de 80 Anos ou mais , Pressão Sanguínea , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
10.
J Clin Monit Comput ; 31(5): 1019-1026, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27752932

RESUMO

Alterations in arterial blood oxygen saturation, heart rate (HR), and respiratory rate (RR) are strongly associated with intra-hospital cardiac arrests and resuscitations. A wireless, easy-to-use, and comfortable method for monitoring these important clinical signs would be highly useful. We investigated whether the Nellcor™ OxiMask MAX-FAST forehead sensor could provide data for vital sign measurements when located at the distal forearm instead of its intended location at the forehead to provide improved comfortability and easy placement. In a prospective setting, we recruited 30 patients undergoing surgery requiring postoperative care. At the postoperative care unit, patients were monitored for two hours using a standard patient monitor and with a study device equipped with a Nellcor™ Forehead SpO2 sensor. The readings were electronically recorded and compared in post hoc analysis using Bland-Altman plots, Spearman's correlation, and root-mean-square error (RMSE). Bland-Altman plot showed that saturation (SpO2) differed by a mean of -0.2 % points (SD, 4.6), with a patient-weighted Spearman's correlation (r) of 0.142, and an RMSE of 4.2 points. For HR measurements, the mean difference was 0.6 bpm (SD, 2.5), r = 0.997, and RMSE = 1.8. For RR, the mean difference was -0.5 1/min (4.1), r = 0.586, and RMSE = 4.0. The SpO2 readings showed a low mean difference, but also a low correlation and high RMSE, indicating that the Nellcor™ saturation sensor cannot reliably assess oxygen saturation at the forearm when compared to finger PPG measurements.


Assuntos
Antebraço , Frequência Cardíaca , Monitorização Fisiológica/métodos , Oximetria/métodos , Oxigênio/sangue , Taxa Respiratória , Idoso , Monitorização Transcutânea dos Gases Sanguíneos/métodos , Feminino , Dedos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes
11.
Heliyon ; 10(13): e33546, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040320

RESUMO

Background: Accurate identification of gait events is crucial to reliable gait analysis. Heel rise, a key event marking the transition from mid-stance to terminal stance, poses challenges in precise detection due to its gradual nature. This leads to variability in accuracy across studies utilizing diverse measuring techniques. Research question: How do different HR detection methods compare when assessed against the underlying heel motion pattern and visual detection across varying speed, footwear conditions, and individuals? Methods: Leveraging data from over 10,000 strides in diverse scenarios with 15 healthy subjects, we evaluated methods based on measurements from optical motion capture (OMC), force plates, and shank-mounted inertial measurement units (IMUs). The evaluation of these methods included an assessment of their precision and consistency with the heel marker's motion pattern and agreement with visually detected heel rise. Results: OMC-based heel rise detection methods, utilizing the heel marker's vertical acceleration and jerk, consistently identified the same point in the heel motion pattern, outperforming velocity-based methods and our new position-based method resembling traditional footswitch-based heel rise detection. Variability in velocity and position-based methods derives from subtle heel rise variations after mid-stance, exhibiting individual differences. Our proposed IMU-based methods show promise by closely matching OMC-based accuracy. Significance: The results have significant implications for gait analysis, providing insights into heel rise event detection's complexities. Accurate HR identification is crucial for gait phase separation, and our findings, especially with the robust heel marker's jerk-based method, enhance precision and consistency across walking conditions. Moreover, our successful development and validation of IMU-based algorithm offer cost-effective and mobile alternative for HR detection, expanding their potential use in comprehensive gait analysis.

12.
Gait Posture ; 111: 1-7, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38603967

RESUMO

BACKGROUND: Accurate detection of gait events is crucial for gait analysis, enabling the assessment of gait patterns and abnormalities. Inertial measurement unit (IMU) sensors have gained traction for event detection, mainly focusing on initial contact (IC) and toe-off (TO) events. However, effective detection of other key events such as heel rise (HR), feet adjacent (FA), and tibia vertical (TBV) is essential for comprehensive gait analysis. RESEARCH QUESTION: Can a novel IMU-based method accurately detect HR, TO, FA, and TBV events, and how does its performance compare with existing methods? METHODS: We developed and validated an IMU-based method using cumulative mediolateral shank angular velocity (CSAV) for event detection. A dataset of nearly 25,000 gait cycles from healthy adults walking at varying speeds and footwear conditions was used for validation. The method's accuracy was assessed against force plate and motion capture data and compared with existing TO detection methods. RESULTS: The CSAV method demonstrated high accuracy in detecting TO, FA, and TBV events and moderate accuracy in HR event detection. Comparisons with existing TO detection methods showcased superior performance. The method's stability across speed and shoe variations underscored its robustness. SIGNIFICANCE: This study introduces a highly accurate IMU-based method for detecting gait events needed to divide the gait cycle into seven phases. The effectiveness of the CSAV method in capturing essential events across different scenarios emphasizes its potential applications. Although HR event detection can be further improved, the precision of the CSAV method in TO, FA, and TBV detection advance the field. This study bridges a critical gap in IMU-based gait event detection by introducing a method for subdividing the swing phase into its subphases. Further research can focus on refining HR detection and expanding the method's utility across diverse gait contexts, thereby enhancing its clinical and scientific significance.


Assuntos
Análise da Marcha , Marcha , Humanos , Análise da Marcha/métodos , Adulto , Fenômenos Biomecânicos , Marcha/fisiologia , Masculino , Feminino , Adulto Jovem
13.
Sci Rep ; 14(1): 2498, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291034

RESUMO

Heart rate variability (HRV) analysis is often used to estimate human health and fitness status. More specifically, a range of parameters that express the variability in beat-to-beat intervals are calculated from electrocardiogram beat detections. Since beat detection may yield erroneous interval data, these errors travel through the processing chain and may result in misleading parameter values that can lead to incorrect conclusions. In this study, we utilized Monte Carlo simulation on real data, Kolmogorov-Smirnov tests and Bland-Altman analysis to carry out extensive analysis of the noise sensitivity of different HRV parameters. The used noise models consider Gaussian and student-t distributed noise. As a result we observed that commonly used HRV parameters (e.g. pNN50 and LF/HF ratio) are especially sensitive to noise and that all parameters show biases to some extent. We conclude that researchers should be careful when reporting different HRV parameters, consider the distributions in addition to mean values, and consider reference data if applicable. The analysis of HRV parameter sensitivity to noise and resulting biases presented in this work generalizes over a wide population and can serve as a reference and thus provide a basis for the decision about which HRV parameters to choose under similar conditions.


Assuntos
Eletrocardiografia , Exercício Físico , Humanos , Frequência Cardíaca/fisiologia
14.
Sci Rep ; 14(1): 8882, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632263

RESUMO

Wearable long-term monitoring applications are becoming more and more popular in both the consumer and the medical market. In wearable ECG monitoring, the data quality depends on the properties of the electrodes and on how they interface with the skin. Dry electrodes do not require any action from the user. They usually do not irritate the skin, and they provide sufficiently high-quality data for ECG monitoring purposes during low-intensity user activity. We investigated prospective motion artifact-resistant dry electrode materials for wearable ECG monitoring. The tested materials were (1) porous: conductive polymer, conductive silver fabric; and (2) solid: stainless steel, silver, and platinum. ECG was acquired from test subjects in a 10-min continuous settling test and in a 48-h intermittent long-term test. In the settling test, the electrodes were stationary, whereas both stationary and controlled motion artifact tests were included in the long-term test. The signal-to-noise ratio (SNR) was used as the figure of merit to quantify the results. Skin-electrode interface impedance was measured to quantify its effect on the ECG, as well as to leverage the dry electrode ECG amplifier design. The SNR of all electrode types increased during the settling test. In the long-term test, the SNR was generally elevated further. The introduction of electrode movement reduced the SNR markedly. Solid electrodes had a higher SNR and lower skin-electrode impedance than porous electrodes. In the stationary testing, stainless steel showed the highest SNR, followed by platinum, silver, conductive polymer, and conductive fabric. In the movement testing, the order was platinum, stainless steel, silver, conductive polymer, and conductive fabric.


Assuntos
Artefatos , Aço Inoxidável , Humanos , Platina , Prata , Estudos Prospectivos , Eletrocardiografia/métodos , Impedância Elétrica , Eletrodos , Polímeros
15.
Data Brief ; 52: 109858, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38146305

RESUMO

In recent years, shank angular velocity (SAV) has emerged as a valuable tool for accurate temporal gait analysis and motion pattern assessment. To explore SAV among healthy subjects and its capability to distinguish differences between walking conditions, three-dimensional SAV data was measured with a gyroscope sensor during normal and barefoot walking. The resulting dataset contains measurement data from 58 healthy adult subjects aged 19 to 75 years. A single gyroscope was positioned on the lateral side of both shanks just above the lateral malleolus. The data collection involved the subjects walking a 10 m distance three times, both wearing shoes and barefoot. The subjects were instructed to walk with their own natural walking velocity, and each walk began from a stationary position. The dataset has the potential to provide information on how height and weight affect gait kinematics and how barefoot walking differ from walking with shoes. The data also supports designing the collection protocol for more extensive datasets of IMU-based shank motion during gait.

16.
Front Oncol ; 14: 1352509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746683

RESUMO

Introduction: Brain tumors are a major source of disease burden in pediatric population, with the most common tumor types being pilocytic astrocytoma, ependymoma and medulloblastoma. In every tumor entity, surgery is the cornerstone of treatment, but the importance of gross-total resection and the corresponding patient prognosis is highly variant. However, real-time identification of pediatric CNS malignancies based on the histology of the frozen sections alone is especially troublesome. We propose a novel method based on differential mobility spectrometry (DMS) analysis for rapid identification of pediatric brain tumors. Methods: We prospectively obtained tumor samples from 15 pediatric patients (5 pilocytic astrocytomas, 5 ependymomas and 5 medulloblastomas). The samples were cut into 36 smaller specimens that were analyzed with the DMS. Results: With linear discriminant analysis algorithm, a classification accuracy (CA) of 70% was reached. Additionally, a 75% CA was achieved in a pooled analysis of medulloblastoma vs. gliomas. Discussion: Our results show that the DMS is able to differentiate most common pediatric brain tumor samples, thus making it a promising additional instrument for real-time brain tumor diagnostics.

17.
Comput Biol Med ; 172: 108235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460311

RESUMO

Cardiovascular diseases (CVD) are a leading cause of death globally, and result in significant morbidity and reduced quality of life. The electrocardiogram (ECG) plays a crucial role in CVD diagnosis, prognosis, and prevention; however, different challenges still remain, such as an increasing unmet demand for skilled cardiologists capable of accurately interpreting ECG. This leads to higher workload and potential diagnostic inaccuracies. Data-driven approaches, such as machine learning (ML) and deep learning (DL) have emerged to improve existing computer-assisted solutions and enhance physicians' ECG interpretation of the complex mechanisms underlying CVD. However, many ML and DL models used to detect ECG-based CVD suffer from a lack of explainability, bias, as well as ethical, legal, and societal implications (ELSI). Despite the critical importance of these Trustworthy Artificial Intelligence (AI) aspects, there is a lack of comprehensive literature reviews that examine the current trends in ECG-based solutions for CVD diagnosis or prognosis that use ML and DL models and address the Trustworthy AI requirements. This review aims to bridge this knowledge gap by providing a systematic review to undertake a holistic analysis across multiple dimensions of these data-driven models such as type of CVD addressed, dataset characteristics, data input modalities, ML and DL algorithms (with a focus on DL), and aspects of Trustworthy AI like explainability, bias and ethical considerations. Additionally, within the analyzed dimensions, various challenges are identified. To these, we provide concrete recommendations, equipping other researchers with valuable insights to understand the current state of the field comprehensively.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/diagnóstico , Inteligência Artificial , Qualidade de Vida , Eletrocardiografia , Aprendizado de Máquina
18.
Front Cardiovasc Med ; 10: 1100127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844740

RESUMO

Aims: The aim was to validate the performance of a monitoring system consisting of a wrist-worn device and a data management cloud service intended to be used by medical professionals in detecting atrial fibrillation (AF). Methods: Thirty adult patients diagnosed with AF alone or AF with concomitant flutter were recruited. Continuous photoplethysmogram (PPG) and intermittent 30 s Lead I electrocardiogram (ECG) recordings were collected over 48 h. The ECG was measured four times a day at prescheduled times, when notified due to irregular rhythm detected by PPG, and when self-initiated based on symptoms. Three-channel Holter ECG was used as the reference. Results: The subjects recorded a total of 1,415 h of continuous PPG data and 3.8 h of intermittent ECG data over the study period. The PPG data were analyzed by the system's algorithm in 5-min segments. The segments containing adequate amounts, at least ~30 s, of adequate quality PPG data for rhythm assessment algorithm, were included. After rejecting 46% of the 5-min segments, the remaining data were compared with annotated Holter ECG yielding AF detection sensitivity and specificity of 95.6 and 99.2%, respectively. The ECG analysis algorithm labeled 10% of the 30-s ECG records as inadequate quality and these were excluded from the analysis. The ECG AF detection sensitivity and specificity were 97.7 and 89.8%, respectively. The usability of the system was found to be good by both the study subjects and the participating cardiologists. Conclusion: The system comprising of a wrist device and a data management service was validated to be suitable for use in patient monitoring and in the detection of AF in an ambulatory setting.Clinical Trial Registration: ClinicalTrials.gov/, NCT05008601.

19.
Physiol Meas ; 44(11)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37494945

RESUMO

Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology.


Assuntos
Fotopletismografia , Dispositivos Eletrônicos Vestíveis , Monitores de Aptidão Física , Processamento de Sinais Assistido por Computador , Frequência Cardíaca/fisiologia
20.
Stud Health Technol Inform ; 290: 200-204, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35673000

RESUMO

Recent developments in smart mobile devices (SMDs), wearable sensors, the Internet, mobile networks, and computing power provide new healthcare opportunities that are not restricted geographically. This paper aims to introduce Mobilemicroservices Architecture (MMA) based on a study on architectures. In MMA, an HTTP-based Mobilemicroservivce (MM) is allocated to each SMD's sensor. The key benefits are extendibility, scalability, ease of use for the patient, security, and the possibility to collect raw data without the necessity to involve cloud services. Feasibility was investigated in a two-year project, where MMA-based solutions were used to collect motor function data from patients with Parkinson's disease. First, we collected motor function data from 98 patients and healthy controls during their visit to a clinic. Second, we monitored the same subjects in real-time for three days in their everyday living environment. These MMA applications represent HTTP-based business-logic computing in which the SMDs' resources are accessible globally.


Assuntos
Telemedicina , Computação em Nuvem , Atenção à Saúde , Estudos de Viabilidade , Humanos , Monitorização Fisiológica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa