Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Chemistry ; 29(1): e202202616, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36181715

RESUMO

Solid-state NMR (ssNMR) spectroscopy facilitates the non-destructive characterization of structurally heterogeneous biomolecules in their native setting, for example, comprising proteins, lipids and polysaccharides. Here we demonstrate the utility of high and ultra-high field 1 H-detected fast MAS ssNMR spectroscopy, which exhibits increased sensitivity and spectral resolution, to further elucidate the atomic-level composition and structural arrangement of the cell wall of Schizophyllum commune, a mushroom-forming fungus from the Basidiomycota phylum. These advancements allowed us to reveal that Cu(II) ions and the antifungal peptide Cathelicidin-2 mainly bind to cell wall proteins at low concentrations while glucans are targeted at high metal ion concentrations. In addition, our data suggest the presence of polysaccharides containing N-acetyl galactosamine (GalNAc) and proteins, including the hydrophobin proteins SC3, shedding more light on the molecular make-up of cells wall as well as the positioning of the polypeptide layer. Obtaining such information may be of critical relevance for future research into fungi in material science and biomedical contexts.


Assuntos
Peptídeos , Proteínas , Proteínas/química , Espectroscopia de Ressonância Magnética , Peptídeos/análise , Polissacarídeos/química , Parede Celular/química
2.
Vet Res ; 53(1): 69, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064470

RESUMO

Chicken cathelicidin-2 (CATH-2) as a host defense peptide has been identified to have potent antimicrobial and immunomodulatory activities. Here, we reported the mechanism by which CATH-2 modulates NLRP3 inflammasome activation. Our results show that CATH-2 and ATP as a positive control induced secretion of IL-1ß and IL-1α in LPS-primed macrophages but did not affect secretion of IL-6, IL-12 and TNF-α. Furthermore, CATH-2 induced caspase-1 activation and oligomerization of apoptosis-associated speck-like protein containing a carboxy- terminal caspase recruitment domain (ASC), which is essential for NLRP3 inflammasome activation. However, CATH-2 failed to induce IL-1ß secretion in Nlrp3-/-, Asc-/- and Casp1-/- macrophages. Notably, IL-1ß and NLRP3 mRNA expression were not affected by CATH-2. In addition, CATH-2-induced NLRP3 inflammasome activation was mediated by K+ efflux but independent of the P2X7 receptor that is required for ATP-mediated K+ efflux. Gene interference of NEK7 kinase which has been identified to directly interact with NLRP3, significantly reduced IL-1ß secretion and caspase-1 activation induced by CATH-2. Furthermore, confocal microscopy shows that CATH-2 significantly induced lysosomal leakage with the diffusion of dextran fluorescent signal. Cathepsin B inhibitors completely abrogated IL-1ß secretion and caspase-1 activation as well as attenuating the formation of ASC specks induced by CATH-2. These results all indicate that CATH-2-induced activation of NLRP3 inflammasome is mediated by K+ efflux, and involves the NEK7 protein and cathepsin B. In conclusion, our study shows that CATH-2 acts as a second signal to activate NLRP3 inflammasome. Our study provides new insight into CATH-2 modulating immune response.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Trifosfato de Adenosina , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Transporte/genética , Caspase 1 , Catepsina B/metabolismo , Galinhas/metabolismo , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Catelicidinas
3.
Appl Microbiol Biotechnol ; 105(5): 1953-1964, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33576886

RESUMO

Therapeutic options to treat invasive fungal infections are still limited. This makes the development of novel antifungal agents highly desirable. Naturally occurring antifungal peptides represent valid candidates, since they are not harmful for human cells and are endowed with a wide range of activities and their mechanism of action is different from that of conventional antifungal drugs. Here, we characterized for the first time the antifungal properties of novel peptides identified in human apolipoprotein B. ApoB-derived peptides, here named r(P)ApoBLPro, r(P)ApoBLAla and r(P)ApoBSPro, were found to have significant fungicidal activity towards Candida albicans (C. albicans) cells. Peptides were also found to be able to slow down metabolic activity of Aspergillus niger (A. niger) spores. In addition, experiments were carried out to clarify the mechanism of fungicidal activity of ApoB-derived peptides. Peptides immediately interacted with C. albicans cell surfaces, as indicated by fluorescence live cell imaging analyses, and induced severe membrane damage, as indicated by propidium iodide uptake induced upon treatment of C. albicans cells with ApoB-derived peptides. ApoB-derived peptides were also tested on A. niger swollen spores, initial hyphae and branched mycelium. The effects of peptides were found to be more severe on swollen spores and initial hyphae compared to mycelium. Fluorescence live cell imaging analyses confirmed peptide internalization into swollen spores with a consequent accumulation into hyphae. Altogether, these findings open interesting perspectives to the application of ApoB-derived peptides as effective antifungal agents. KEY POINTS: Human cryptides identified in ApoB are effective antifungal agents. ApoB-derived cryptides exert fungicidal effects towards C. albicans cells. ApoB-derived cryptides affect different stages of growth of A. niger. Graphical abstract.


Assuntos
Antifúngicos , Peptídeos Catiônicos Antimicrobianos , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Apolipoproteínas B , Candida albicans , Humanos , Hifas , Testes de Sensibilidade Microbiana
4.
Vet Res ; 51(1): 122, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32972448

RESUMO

Cathelicidins (CATHs) play an important role in the innate immune response against microbial infections. Among the four chicken cathelicidins, CATH-B1 is studied the least. In this study, the effect of CATH-B1 on the macrophage response towards avian pathogenic E. coli (APEC) and bacterial ligands was investigated. Our results show that APEC induced CATH-B1 gene expression in both a chicken macrophage cell line (HD11 cells) and primary macrophages, while expression of the other three CATHs was virtually unaffected. While the antimicrobial activity of CATH-B1 is very low under cell culture conditions, it enhanced bacterial phagocytosis by macrophages. Interestingly, CATH-B1 downregulated APEC-induced gene expression of pro-inflammatory cytokines (IFN-ß, IL-1ß, IL-6 and IL-8) in primary macrophages. In addition, CATH-B1 pre-incubated macrophages showed a significantly higher gene expression of IL-10 after APEC challenge, indicating an overall anti-inflammatory profile for CATH-B1. Using isothermal titration calorimetry (ITC), CATH-B1 was shown to bind LPS. This suggests that CATH-B1 reduces toll like receptor (TLR) 4 dependent activation by APEC which may partly explain the decreased production of pro-inflammatory cytokines by macrophages. On the contrary, direct binding of CATH-B1 to ODN-2006 enhanced the TLR21 dependent activation of macrophages as measured by nitric oxide production. In conclusion, our results show for the first time that CATH-B1 has several immunomodulatory activities and thereby could be an important factor in the chicken immune response.


Assuntos
Proteínas Aviárias/imunologia , Proteínas de Bactérias/metabolismo , Catelicidinas/imunologia , Galinhas/imunologia , Imunomodulação/genética , Macrófagos/imunologia , Animais , Proteínas Aviárias/genética , Catelicidinas/genética , Regulação para Baixo , Escherichia coli/fisiologia , Ligantes
5.
J Immunol ; 199(4): 1418-1428, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28710255

RESUMO

Activation of the immune system needs to be tightly regulated to provide protection against infections and, at the same time, to prevent excessive inflammation to limit collateral damage to the host. This tight regulation includes regulating the activation of TLRs, which are key players in the recognition of invading microbes. A group of short cationic antimicrobial peptides, called cathelicidins, have previously been shown to modulate TLR activation by synthetic or purified TLR ligands and may play an important role in the regulation of inflammation during infections. However, little is known about how these cathelicidins affect TLR activation in the context of complete and viable bacteria. In this article, we show that chicken cathelicidin-2 kills Escherichia coli in an immunogenically silent fashion. Our results show that chicken cathelicidin-2 kills E. coli by permeabilizing the bacterial inner membrane and subsequently binds the outer membrane-derived lipoproteins and LPS to inhibit TLR2 and TLR4 activation, respectively. In addition, other cathelicidins, including human, mouse, pig, and dog cathelicidins, which lack antimicrobial activity under cell culture conditions, only inhibit macrophage activation by nonviable E. coli In total, this study shows that cathelicidins do not affect immune activation by viable bacteria and only inhibit inflammation when bacterial viability is lost. Therefore, cathelicidins provide a novel mechanism by which the immune system can discriminate between viable and nonviable Gram-negative bacteria to tune the immune response, thereby limiting collateral damage to the host and the risk for sepsis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/fisiologia , Proteínas Sanguíneas/fisiologia , Escherichia coli/imunologia , Bactérias Gram-Negativas/imunologia , Ativação de Macrófagos , Viabilidade Microbiana , Precursores de Proteínas/fisiologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Proteínas Sanguíneas/isolamento & purificação , Proteínas Sanguíneas/metabolismo , Catelicidinas/fisiologia , Galinhas/imunologia , Cães , Bactérias Gram-Negativas/fisiologia , Humanos , Inflamação/imunologia , Camundongos , Precursores de Proteínas/isolamento & purificação , Precursores de Proteínas/metabolismo , Suínos/imunologia
6.
Infect Immun ; 85(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28947647

RESUMO

The development of antibiotic resistance by Pseudomonas aeruginosa is a major concern in the treatment of bacterial pneumonia. In the search for novel anti-infective therapies, the chicken-derived peptide cathelicidin-2 (CATH-2) has emerged as a potential candidate, with strong broad-spectrum antimicrobial activity and the ability to limit inflammation by inhibiting Toll-like receptor 2 (TLR2) and TLR4 activation. However, as it is unknown how CATH-2 affects inflammation in vivo, we investigated how CATH-2-mediated killing of P. aeruginosa affects lung inflammation in a murine model. First, murine macrophages were used to determine whether CATH-2-mediated killing of P. aeruginosa reduced proinflammatory cytokine production in vitro Next, a murine lung model was used to analyze how CATH-2-mediated killing of P. aeruginosa affects neutrophil and macrophage recruitment as well as cytokine/chemokine production in the lung. Our results show that CATH-2 kills P. aeruginosa in an immunogenically silent manner both in vitro and in vivo Treatment with CATH-2-killed P. aeruginosa showed reduced neutrophil recruitment to the lung as well as inhibition of cytokine and chemokine production, compared to treatment with heat- or gentamicin-killed bacteria. Together, these results show the potential for CATH-2 as a dual-activity antibiotic in bacterial pneumonia, which can both kill P. aeruginosa and prevent excessive inflammation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Inflamação/prevenção & controle , Pulmão/microbiologia , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Linhagem Celular , Quimiocinas/imunologia , Galinhas/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Imunidade Inata , Inflamação/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/veterinária
7.
J Immunol ; 195(8): 3970-7, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26378074

RESUMO

Cathelicidins are essential in the protection against invading pathogens through both their direct antimicrobial activity and their immunomodulatory functions. Although cathelicidins are known to modulate activation by several TLR ligands, little is known about their influence on DNA-induced macrophage activation. In this study, we explored the effects of cathelicidins on DNA-induced activation of chicken macrophages and elucidated the intracellular processes underlying these effects. Our results show that chicken cathelicidin (CATH)-2 strongly enhances DNA-induced activation of both chicken and mammalian macrophages because of enhanced endocytosis of DNA-CATH-2 complexes. After endocytosis, DNA is liberated from the complex because of proteolytic breakdown of CATH-2, after which TLR21 is activated. This leads to increased cytokine expression and NO production. Through the interaction with DNA, CATH-2 can play an important role in modulating the immune response at sites of infection. These observations underline the importance of cathelicidins in sensing bacterial products and regulating immune responses.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas Aviárias/imunologia , DNA/imunologia , Endossomos/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Proteólise , Animais , Linhagem Celular , Galinhas , Endocitose/imunologia , Catelicidinas
8.
Antimicrob Agents Chemother ; 59(6): 3075-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25753641

RESUMO

Antibiotic-resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multidrug-resistant bacterial infections. Antimicrobial peptides (AMPs) have been suggested as future therapeutics for these drug-resistant bacteria, since they have potent broad-spectrum activity, with little development of resistance. Due to the unique structure of the lung, bacterial pneumonia has the additional problem of delivering antimicrobials to the site of infection. One potential solution is coadministration of AMPs with exogenous surfactant, allowing for distribution of the peptides to distal airways and opening of collapsed lung regions. The objective of this study was to test various surfactant-AMP mixtures with regard to maintaining pulmonary surfactant biophysical properties and bactericidal functions. We compared the properties of four AMPs (CATH-1, CATH-2, CRAMP, and LL-37) suspended in bovine lipid-extract surfactant (BLES) by assessing surfactant-AMP mixture biophysical and antimicrobial functions. Antimicrobial activity was tested against methillicin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. All AMP/surfactant mixtures exhibited an increase of spreading compared to a BLES control. BLES+CATH-2 mixtures had no significantly different minimum surface tension versus the BLES control. Compared to the other cathelicidins, CATH-2 retained the most bactericidal activity in the presence of BLES. The BLES+CATH-2 mixture appears to be an optimal surfactant-AMP mixture based on in vitro assays. Future directions involve investigating the potential of this mixture in animal models of bacterial pneumonia.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Surfactantes Pulmonares/farmacologia , Surfactantes Pulmonares/uso terapêutico , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bovinos , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
9.
Antimicrob Agents Chemother ; 58(4): 2240-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492359

RESUMO

Antifungal mechanisms of action of two cathelicidins, chicken CATH-2 and human LL-37, were studied and compared with the mode of action of the salivary peptide histatin 5 (Hst5). Candida albicans was used as a model organism for fungal pathogens. Analysis by live-cell imaging showed that the peptides kill C. albicans rapidly. CATH-2 is the most active peptide and kills C. albicans within 5 min. Both cathelicidins induce cell membrane permeabilization and simultaneous vacuolar expansion. Minimal fungicidal concentrations (MFC) are in the same order of magnitude for all three peptides, but the mechanisms of antifungal activity are very different. The activity of cathelicidins is independent of the energy status of the fungal cell, unlike Hst5 activity. Live-cell imaging using fluorescently labeled peptides showed that both CATH-2 and LL-37 quickly localize to the C. albicans cell membrane, while Hst5 was mainly directed to the fungal vacuole. Small amounts of cathelicidins internalize at sub-MFCs, suggesting that intracellular activities of the peptide could contribute to the antifungal activity. Analysis by flow cytometry indicated that CATH-2 significantly decreases C. albicans cell size. Finally, electron microscopy showed that CATH-2 affects the integrity of the cell membrane and nuclear envelope. It is concluded that the general mechanisms of action of both cathelicidins are partially similar (but very different from that of Hst5). CATH-2 has unique features and possesses antifungal potential superior to that of LL-37.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Catelicidinas/farmacologia , Testes de Sensibilidade Microbiana , Microscopia Eletrônica
10.
Crit Rev Microbiol ; 40(1): 76-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23445470

RESUMO

With the increase in antibiotic-resistant bacteria and the lack of new antibiotics being brought onto the market, alternative strategies need to be found to cope with infections resulting from drug-resistant bacteria. A possible solution may be to combine existing antibiotics with phytochemicals to enhance the efficacy of antibiotics. A group of phytochemicals that is said to have such effects, according to in vitro studies, is essential oils (EOs) and their components. Amongst others, EOs containing carvacrol, cinnamaldehyde, cinnamic acid, eugenol and thymol can have a synergistic effect in combination with antibiotics. Several modes of action have been put forward by which antibiotics and the essential oil components may act synergistically, such as by affecting multiple targets; by physicochemical interactions and inhibiting antibacterial-resistance mechanisms. Many reported assays show additivity or moderate synergism, indicating that EOs may offer possibilities for reducing antibiotic use.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Sinergismo Farmacológico , Óleos Voláteis/farmacologia
11.
Dev Comp Immunol ; 149: 105047, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37625470

RESUMO

Natural killer (NK) cells are cytotoxic lymphocytes that are present in the circulation but also in many organs including spleen and gut, where they play an important role in the defense against infections. Interaction of NK cells with target cells leads to degranulation, which results in the release of perforin and granzymes in the direct vicinity of the target cell. Chicken NK cells have many characteristics similar to their mammalian counterparts and based on similarities with studies on human NK cells, surface expression of CD107 was always presumed to correlate with granule release. However, proof of this degranulation or in fact the actual presence of perforin (PFN) and granzyme A (GrA) in chicken NK cells and their release upon activation is lacking. Therefore, the purpose of the present study was to determine the presence of perforin and granzyme A in primary chicken NK cells and to measure their release upon degranulation, as an additional tool to study the function of chicken NK cells. Using human specific antibodies against PFN and GrA in fluorescent and confocal microscopy resulted in staining in chicken NK cells. The presence of PFN and GrA was also confirmed by Western blot analyses and its gene expression by PCR. Stimulation of NK cells with the pectin SPE6 followed by flow cytometry resulted in reduced levels of intracellular PFN and GrA, suggesting release of PFN and GrA. Expression of PFN and GrA reversely correlated with increased surface expression of the lysosomal marker CD107. Finally it was shown that the supernatant of activated NK cells, containing the NK cell granule content including PFN and GrA, was able to kill Escherichia coli. This study correlates PFN and GrA release to activation of chicken NK cells and establishes an additional tool to study activity of cytotoxic lymphocytes in chickens.


Assuntos
Galinhas , Células Matadoras Naturais , Animais , Galinhas/metabolismo , Granzimas/metabolismo , Perforina/metabolismo
12.
ACS Infect Dis ; 9(3): 518-526, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36790385

RESUMO

Peptide antibiotics have gathered attention given the urgent need to discover antimicrobials with new mechanisms of action. Their extended role as immunomodulators makes them interesting candidates for the development of compounds with dual mode of action. The objective of this study was to test the anti-inflammatory capacity of a recently reported chimeric peptidomimetic antibiotic (CPA) composed of polymyxin B nonapeptide (PMBN) and a macrocyclic ß-hairpin motif (MHM). We investigated the potential of CPA to inhibit lipopolysaccharide (LPS)-induced activation of RAW264.7 macrophages. In addition, we elucidated which structural motif was responsible for this activity by testing CPA, its building blocks, and their parent compounds separately. CPA showed excellent LPS neutralizing activity for both smooth and rough LPSs. At nanomolar concentrations, CPA completely inhibited LPS-induced nitric oxide, TNF-α, and IL-10 secretion. Murepavadin, MHM, and PMBN were incapable of neutralizing LPS in this assay, while PMB was less active compared to CPA. Isothermal titration calorimetry showed strong binding between the CPA and LPS with similar binding characteristics also found for the other compounds, indicating that binding does not necessarily correlate with neutralization of LPS. Finally, we showed that CPA-killed bacteria caused significantly less macrophage activation than bacteria killed with gentamicin, heat, or any of the other compounds. This indicates that the combined killing activity and LPS neutralization of CPA can prevent unwanted inflammation, which could be a major advantage over conventional antibiotics. Our data suggests that immunomodulatory activity can further strengthen the therapeutic potential of peptide antibiotics and should be included in the characterization of novel compounds.


Assuntos
Antibacterianos , Macrófagos , Peptidomiméticos , Antibacterianos/farmacologia , Bactérias , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Peptidomiméticos/farmacologia , Células RAW 264.7 , Animais , Camundongos
13.
Dev Comp Immunol ; 139: 104582, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36306971

RESUMO

The air-liquid interface of the mammalian lung is lined with pulmonary surfactants, a mixture of specific proteins and lipids that serve a dual purpose-enabling air-breathing and protection against pathogens. In mammals, surfactant proteins A (SP-A) and D (SP -D) are involved in innate defence of the lung. Birds seem to lack the SP-D gene, but possess SP-A2, an additional SP-A-like gene. Here we investigated the evolution of the SP-A and SP-D genes using computational gene prediction, homology, simulation modelling and phylogeny with published avian and other vertebrate genomes. PCR was used to confirm the identity and expression of SP-A analogues in various tissue homogenates of zebra finch and turkey. In silico analysis confirmed the absence of SP-D-like genes in all 47 published avian genomes. Zebra finch and turkey SP-A1 and SP-A2 sequences, confirmed by PCR of lung homogenates, were compared with sequenced and in silico predicted vertebrate homologs to construct a phylogenetic tree. The collagen domain of avian SP-A1, especially that of zebra finch, was dramatically shorter than that of mammalian SP-A. Amphibian and reptilian genomes also contain avian-like SP-A2 protein sequences with a collagen domain. NCBI Gnomon-predicted avian and alligator SP-A2 proteins all lacked the collagen domain completely. Both avian SP-A1 and SP-A2 sequences form separate clades, which are most closely related to their closest relatives, the alligators. The C-terminal carbohydrate recognition domain (CRD) of zebra finch SP-A1 was structurally almost identical to that of rat SP-A. In fact, the CRD of SP-A is highly conserved among all the vertebrates. Birds retained a truncated version of mammalian type SP-A1 as well as a non-collagenous C-type lectin, designated SP-A2, while losing the large collagenous SP-D lectin, reflecting their evolutionary trajectory towards a unidirectional respiratory system. In the context of zoonotic infections, how these evolutionary changes affect avian pulmonary surface protection is not clear.


Assuntos
Lectinas Tipo C , Proteína D Associada a Surfactante Pulmonar , Ratos , Animais , Filogenia , Proteína D Associada a Surfactante Pulmonar/genética , Tensoativos , Mamíferos
14.
PLoS One ; 18(11): e0292757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37939066

RESUMO

Macrophages can reversibly polarize into multiple functional subsets depending on their micro-environment. Identification and understanding the functionality of these subsets is relevant for the study of immune­related diseases. However, knowledge about canine macrophage polarization is still in its infancy. In this study, we polarized canine monocytes using GM-CSF/IFN- γ and LPS towards M1 macrophages or M-CSF and IL-4 towards M2 macrophages and compared them to undifferentiated monocytes (M0). Polarized M1 and M2 macrophages were thoroughly characterized for morphology, surface marker features, gene profiles and functional properties. Our results showed that canine M1-polarized macrophages obtained a characteristic large, roundish, or amoeboid shape, while M2-polarized macrophages were smaller and adopted an elongated spindle-like morphology. Phenotypically, all macrophage subsets expressed the pan-macrophage markers CD14 and CD11b. M1-polarized macrophages expressed increased levels of CD40, CD80 CD86 and MHC II, while a significant increase in the expression levels of CD206, CD209, and CD163 was observed in M2-polarized macrophages. RNAseq of the three macrophage subsets showed distinct gene expression profiles, which are closely associated with immune responsiveness, cell differentiation and phagocytosis. However, the complexity of the gene expression patterns makes it difficult to assign clear new polarization markers. Functionally, undifferentiated -monocytes, and M1- and M2- like subsets of canine macrophages can all phagocytose latex beads. M2-polarized macrophages exhibited the strongest phagocytic capacity compared to undifferentiated monocytes- and M1-polarized cells. Taken together, this study showed that canine M1 and M2-like macrophages have distinct features largely in parallel to those of well-studied species, such as human, mouse and pig. These findings enable future use of monocyte derived polarized macrophages particularly in studies of immune related diseases in dogs.


Assuntos
Macrófagos , Monócitos , Animais , Cães , Diferenciação Celular , Macrófagos/metabolismo , Monócitos/metabolismo , Fagocitose
15.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895956

RESUMO

The binding of Host Defense Peptides (HDPs) to the endotoxin of Gram-negative bacteria has important unsolved aspects. For most HDPs, it is unclear if binding is part of the antibacterial mechanism or whether LPS actually provides a protective layer against HDP killing. In addition, HDP binding to LPS can block the subsequent TLR4-mediated activation of the immune system. This dual activity is important, considering that HDPs are thought of as an alternative to conventional antibiotics, which do not provide this dual activity. In this study, we systematically determine, for the first time, the influence of the O-antigen and Lipid A composition on both the antibacterial and anti-endotoxin activity of four HDPs (CATH-2, PR-39, PMAP-23, and PMAP36). The presence of the O-antigen did not affect the antibacterial activity of any of the tested HDPs. Similarly, modification of the lipid A phosphate (MCR-1 phenotype) also did not affect the activity of the HDPs. Furthermore, assessment of inner and outer membrane damage revealed that CATH-2 and PMAP-36 are profoundly membrane-active and disrupt the inner and outer membrane of Escherichia coli simultaneously, suggesting that crossing the outer membrane is the rate-limiting step in the bactericidal activity of these HDPs but is independent of the presence of an O-antigen. In contrast to killing, larger differences were observed for the anti-endotoxin properties of HDPs. CATH-2 and PMAP-36 were much stronger at suppressing LPS-induced activation of macrophages compared to PR-39 and PMAP-23. In addition, the presence of only one phosphate group in the lipid A moiety reduced the immunomodulating activity of these HDPs. Overall, the data strongly suggest that LPS composition has little effect on bacterial killing but that Lipid A modification can affect the immunomodulatory role of HDPs. This dual activity should be considered when HDPs are considered for application purposes in the treatment of infectious diseases.

16.
Vet Immunol Immunopathol ; 244: 110369, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34954638

RESUMO

Infectious diseases in pigs cause monetary loss to farmers and pose a zoonotic risk. Therefore, it is important to obtain more porcine specific immunological knowledge as a measure to protect against infectious diseases, for example by exploring immunomodulators that are usable as vaccine adjuvants. Cathelicidins are a class of host defence peptides (HDPs) able to directly kill microbes as well as exert a diverse range of effects on the immune system. The peptides have shown promise as immunomodulatory peptides in many applications, including vaccines. However, it is currently unknown what the precise effect of these peptides is on porcine immune cells and whether peptides of other species might also have a strong immunomodulatory effect on porcine macrophages. Mononuclear bone marrow cells of pigs, aged 5-6 months, were cultured into M1 or M2 macrophages and stimulated with LPS or whole bacteria in the presence of host defence peptides (HDPs). CATH-2 and LL-37 strongly inhibited LPS-induced activation of M1 macrophages, the inhibition of LPS-induced activation of M2 macrophages by HDPs was milder, showing that the peptides have selective effects on different cell types. Upon stimulation with whole bacteria, only CATH-2 could effectively inhibit macrophage activation, showing the potent anti-inflammatory potential of this peptide. These results show that porcine peptides are not necessarily the most active in a porcine system, and that CATH-2 is effective in a porcine system as an anti-inflammatory immune modulator, which can be used, for example, in inactivated pathogen vaccines.


Assuntos
Proteínas Sanguíneas/imunologia , Escherichia coli , Macrófagos/imunologia , Precursores de Proteínas/imunologia , Adjuvantes de Vacinas , Animais , Células Cultivadas , Lipopolissacarídeos/farmacologia , Macrófagos/microbiologia , Suínos
17.
Vaccine ; 40(16): 2399-2408, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35307226

RESUMO

Antibiotic resistance is increasing and one strategy to prevent resistance development is the use of bacterial vaccines. For Gram-negative bacteria, natural outer membrane vesicles (OMVs) could be used for vaccine development. These vesicular structures are naturally produced by all Gram-negative bacteria and contain several antigens in their native environment. However, despite that the presence of lipopolysaccharide (LPS) may aid as intrinsic adjuvant, there is a risk that it may also cause undesired immune responses. Therefore, molecules to dampen LPS-induced toll-like receptor (TLR) 4 activation may be needed. Here host defense peptides (HDPs), like cathelicidins, can play an important role. They have been shown to interact with LPS and thereby neutralize LPS-induced TLR4 activation. However, there is currently no knowledge about neutralization in an OMV-based setting. Therefore, in this paper the immune modulating capacity of HDPs was investigated after macrophage stimulation with either spontaneous or heat-induced B. bronchiseptica OMVs. This revealed that the cathelicidins LL-37, CATH-2, PMAP-36 and K9CATH were able to modulate immune responses. Interestingly, immune modulation by these cathelicidins was different for spontaneous compared to heat-induced OMVs. Interaction studies revealed that the mode of binding of cathelicidins to OMVs slightly differed between OMV classes. Furthermore, TLR screening revealed that TLR2, 4, 5 and 9 were involved in stimulation of macrophages by OMVs, with TLR4-mediated activation being the most important pathway. Uptake of OMVs did not play a major role in macrophage activation. Taken together, this study shows how OMVs can activate macrophages and how cathelicidins may modulate these immune responses.


Assuntos
Proteínas da Membrana Bacteriana Externa , Catelicidinas , Bactérias Gram-Negativas , Imunidade Inata , Lipopolissacarídeos
18.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215373

RESUMO

Therapeutic solutions to counter Burkholderia cepacia complex (Bcc) bacteria are challenging due to their intrinsically high level of antibiotic resistance. Bcc organisms display a variety of potential virulence factors, have a distinct lipopolysaccharide naturally implicated in antimicrobial resistance. and are able to form biofilms, which may further protect them from both host defence peptides (HDPs) and antibiotics. Here, we report the promising anti-biofilm and immunomodulatory activities of human HDP GVF27 on two of the most clinically relevant Bcc members, Burkholderia multivorans and Burkholderia cenocepacia. The effects of synthetic and labelled GVF27 were tested on B. cenocepacia and B. multivorans biofilms, at three different stages of formation, by confocal laser scanning microscopy (CLSM). Assays on bacterial cultures and on human monocytes challenged with B. cenocepacia LPS were also performed. GVF27 exerts, at different stages of formation, anti-biofilm effects towards both Bcc strains, a significant propensity to function in combination with ciprofloxacin, a relevant affinity for LPSs isolated from B. cenocepacia as well as a good propensity to mitigate the release of pro-inflammatory cytokines in human cells pre-treated with the same endotoxin. Overall, all these findings contribute to the elucidation of the main features that a good therapeutic agent directed against these extremely leathery biofilm-forming bacteria should possess.

19.
J Adv Res ; 36: 101-112, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35127168

RESUMO

Introduction: Due to the increase of antibiotic resistant bacterial strains, there is an urgent need for development of alternatives to antibiotics. Cathelicidins can be such an alternative to antibiotics having both a direct antimicrobial capacity as well as an immunomodulatory function. Previously, the full d-enantiomer of chicken cathelicidin-2 (d-CATH-2) has shown to prophylactically protect chickens against infection 7 days post hatch when administered in ovo three days before hatch. Objectives: To further evaluate d-CATH-2 in mammals as a candidate for an alternative to antibiotics.In this study, the prophylactic capacity of d-CATH-2 and two truncated derivatives, d-C(1-21) and d-C(4-21), was determined in mammalian cells. Methods: Antibacterial assays; immune cell differentiation and modulation; cytotoxicity, isothermal titration calorimetry; in vivo prophylactic capacity of peptides in an S. suis infection model. Results: d-CATH-2 and its derivatives were shown to have a strong direct antibacterial capacity against four different S. suis serotype 2 strains (P1/7, S735, D282, and OV625) in bacterial medium and even stronger in cell culture medium. In addition, d-CATH-2 and its derivatives ameliorated the efficiency of mouse bone marrow-derived macrophages (BMDM) and skewed mouse bone marrow-derived dendritic cells (BMDC) towards cells with a more macrophage-like phenotype. The peptides directly bind lipoteichoic acid (LTA) and inhibit LTA-induced activation of macrophages. In addition, S. suis killed by the peptide was unable to further activate mouse macrophages, which indicates that S. suis was eliminated by the previously reported silent killing mechanism. Administration of d-C(1-21) at 24 h or 7 days before infection resulted in a small prophylactic protection with reduced disease severity and reduced mortality of the treated mice. Conclusion: d-enantiomers of CATH-2 show promise as anti-infectives against pathogenic S. suis for application in mammals.


Assuntos
Streptococcus suis , Animais , Catelicidinas/química , Catelicidinas/metabolismo , Catelicidinas/farmacologia , Galinhas , Macrófagos/metabolismo , Camundongos , Sorogrupo
20.
ACS Nano ; 16(2): 1880-1895, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35112568

RESUMO

Encrypted peptides have been recently found in the human proteome and represent a potential class of antibiotics. Here we report three peptides derived from the human apolipoprotein B (residues 887-922) that exhibited potent antimicrobial activity against drug-resistant Klebsiella pneumoniae, Acinetobacter baumannii, and Staphylococci both in vitro and in an animal model. The peptides had excellent cytotoxicity profiles, targeted bacteria by depolarizing and permeabilizing their cytoplasmic membrane, inhibited biofilms, and displayed anti-inflammatory properties. Importantly, the peptides, when used in combination, potentiated the activity of conventional antibiotics against bacteria and did not select for bacterial resistance. To ensure translatability of these molecules, a protease resistant retro-inverso variant of the lead encrypted peptide was synthesized and demonstrated anti-infective activity in a preclinical mouse model. Our results provide a link between human plasma and innate immunity and point to the blood as a source of much-needed antimicrobials.


Assuntos
Acinetobacter baumannii , Antibacterianos , Animais , Antibacterianos/química , Biofilmes , Humanos , Klebsiella pneumoniae , Camundongos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa