Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Vis Exp ; (191)2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688542

RESUMO

During membrane protein structural elucidation and biophysical characterization, it is common to trial numerous protein constructs containing different tags, truncations, deletions, fusion partner insertions, and stabilizing mutations to find one that is not aggregated after extraction from the membrane. Furthermore, buffer screening to determine the detergent, additive, ligand, or polymer that provides the most stabilizing condition for the membrane protein is an important practice. The early characterization of membrane protein quality by fluorescent size exclusion chromatography provides a powerful tool to assess and rank different constructs or conditions without the requirement for protein purification, and this tool also minimizes the sample requirement. The membrane proteins must be fluorescently tagged, commonly by expressing them with a GFP tag or similar. The protein can be solubilized directly from whole cells and then crudely clarified by centrifugation; subsequently, the protein is passed down a size exclusion column, and a fluorescent trace is collected. Here, a method for running FSEC and representative FSEC data on the GPCR targets sphingosine-1-phosphate receptor (S1PR1) and serotonin receptor (5HT2AR) are presented.


Assuntos
Corantes , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Cromatografia em Gel
2.
Cancer Res ; 79(14): 3762-3775, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31123088

RESUMO

DNA damage checkpoint kinases ATR and WEE1 are among key regulators of DNA damage response pathways protecting cells from replication stress, a hallmark of cancer that has potential to be exploited for therapeutic use. ATR and WEE1 inhibitors are in early clinical trials and success will require greater understanding of both their mechanism of action and biomarkers for patient selection. Here, we report selective antitumor activity of ATR and WEE1 inhibitors in a subset of non-germinal center B-cell (GCB) diffuse large B-cell lymphoma (DLBCL) cell lines, characterized by high MYC protein expression and CDKN2A/B deletion. Activity correlated with the induction of replication stress, indicated by increased origin firing and retardation of replication fork progression. However, ATR and WEE1 inhibitors caused different amounts of DNA damage and cell death in distinct phases of the cell cycle, underlying the increased potency observed with WEE1 inhibition. ATR inhibition caused DNA damage to manifest as 53BP1 nuclear bodies in daughter G1 cells leading to G1 arrest, whereas WEE1 inhibition caused DNA damage and arrest in S phase, leading to earlier onset apoptosis. In vivo xenograft DLBCL models confirmed differences in single-agent antitumor activity, but also showed potential for effective ATR inhibitor combinations. Importantly, insights into the different inhibitor mechanisms may guide differentiated clinical development strategies aimed at exploiting specific vulnerabilities of tumor cells while maximizing therapeutic index. Our data therefore highlight clinical development opportunities for both ATR and WEE1 inhibitors in non-GCB DLBCL subtypes that represent an area of unmet clinical need. SIGNIFICANCE: ATR and WEE1 inhibitors demonstrate effective antitumor activity in preclinical models of DLBCL associated with replication stress, but new mechanistic insights and biomarkers of response support a differentiated clinical development strategy.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas de Ciclo Celular/antagonistas & inibidores , Replicação do DNA/efeitos dos fármacos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Pirimidinonas/farmacologia , Sulfóxidos/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p15/deficiência , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Indóis , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Morfolinas , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/genética , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Pirimidinonas/administração & dosagem , Sulfonamidas , Sulfóxidos/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Immunother Cancer ; 5(1): 63, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28807001

RESUMO

BACKGROUND: T-cell checkpoint blockade and MEK inhibitor combinations are under clinical investigation. Despite progress elucidating the immuno-modulatory effects of MEK inhibitors as standalone therapies, the impact of MEK inhibition on the activity of T-cell checkpoint inhibitors remains incompletely understood. Here we sought to characterize the combined effects of MEK inhibition and anti-CTLA-4 mAb (anti-CTLA-4) therapy, examining effects on both T-cells and tumor microenvironment (TME). METHODS: In mice, the effects of MEK inhibition, via selumetinib, and anti-CTLA-4 on immune responses to keyhole limpet haemocyanin (KLH) immunization were monitored using ex vivo functional assays with splenocytes. In a KRAS-mutant CT26 mouse colorectal cancer model, the impact on the tumor microenvironment (TME) and the spleen were evaluated by flow cytometry. The TME was further examined by gene expression and immunohistochemical analyses. The combination and sequencing of selumetinib and anti-CTLA-4 were also evaluated in efficacy studies using the CT26 mouse syngeneic model. RESULTS: Anti-CTLA-4 enhanced the generation of KLH specific immunity following KLH immunization in vivo; selumetinib was found to reduce, but did not prevent, this enhancement of immune response by anti-CTLA-4 in vivo. In the CT26 mouse model, anti-CTLA-4 treatment led to higher expression levels of the immunosuppressive mediators, Cox-2 and Arg1 in the TME. Combination of anti-CTLA-4 with selumetinib negated this up-regulation of Cox-2 and Arg1, reduced the frequency of CD11+ Ly6G+ myeloid cells, and led to the accumulation of differentiating monocytes at the Ly6C+ MHC+ intermediate state in the tumor. We also report that MEK inhibition had limited impact on anti-CTLA-4-mediated increases in T-cell infiltration and T-cell activation in CT26 tumors. Finally, we show that pre-treatment, but not concurrent treatment, with selumetinib enhanced the anti-tumor activity of anti-CTLA-4 in the CT26 model. CONCLUSION: These data provide evidence that MEK inhibition can lead to changes in myeloid cells and immunosuppressive factors in the tumor, thus potentially conditioning the TME to facilitate improved response to anti-CTLA-4 treatment. In summary, the use of MEK inhibitors to alter the TME as an approach to enhance the activities of immune checkpoint inhibitors warrants further investigation in clinical trials.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Benzimidazóis/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Benzimidazóis/farmacologia , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Reprogramação Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Cancer Ther ; 15(11): 2802-2813, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27550940

RESUMO

The challenge of developing effective pharmacodynamic biomarkers for preclinical and clinical testing of FGFR signaling inhibition is significant. Assays that rely on the measurement of phospho-protein epitopes can be limited by the availability of effective antibody detection reagents. Transcript profiling enables accurate quantification of many biomarkers and provides a broader representation of pathway modulation. To identify dynamic transcript biomarkers of FGFR signaling inhibition by AZD4547, a potent inhibitor of FGF receptors 1, 2, and 3, a gene expression profiling study was performed in FGFR2-amplified, drug-sensitive tumor cell lines. Consistent with known signaling pathways activated by FGFR, we identified transcript biomarkers downstream of the RAS-MAPK and PI3K/AKT pathways. Using different tumor cell lines in vitro and xenografts in vivo, we confirmed that some of these transcript biomarkers (DUSP6, ETV5, YPEL2) were modulated downstream of oncogenic FGFR1, 2, 3, whereas others showed selective modulation only by FGFR2 signaling (EGR1). These transcripts showed consistent time-dependent modulation, corresponding to the plasma exposure of AZD4547 and inhibition of phosphorylation of the downstream signaling molecules FRS2 or ERK. Combination of FGFR and AKT inhibition in an FGFR2-mutated endometrial cancer xenograft model enhanced modulation of transcript biomarkers from the PI3K/AKT pathway and tumor growth inhibition. These biomarkers were detected on the clinically validated nanoString platform. Taken together, these data identified novel dynamic transcript biomarkers of FGFR inhibition that were validated in a number of in vivo models, and which are more robustly modulated by FGFR inhibition than some conventional downstream signaling protein biomarkers. Mol Cancer Ther; 15(11); 2802-13. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Piperazinas/farmacologia , Pirazóis/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Transcriptoma , Animais , Biomarcadores , Linhagem Celular Tumoral , Análise por Conglomerados , Modelos Animais de Doenças , Feminino , Amplificação de Genes , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos
5.
Pharmacol Res Perspect ; 3(5): e00175, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26516587

RESUMO

Off-target pharmacology may contribute to both adverse and beneficial effects of a new drug. In vitro pharmacological profiling is often applied early in drug discovery; there are fewer reports addressing the relevance of broad profiles to clinical adverse effects. Here, we have characterized the pharmacological profile of the active metabolite of fostamatinib, R406, linking an understanding of drug selectivity to the increase in blood pressure observed in clinical studies. R406 was profiled in a broad range of in vitro assays to generate a comprehensive pharmacological profile and key targets were further investigated using functional and cellular assay systems. A combination of traditional literature searches and text-mining approaches established potential mechanistic links between the profile of R406 and clinical side effects. R406 was selective outside the kinase domain, with only antagonist activity at the adenosine A3 receptor in the range relevant to clinical effects. R406 was less selective in the kinase domain, having activity at many protein kinases at therapeutically relevant concentrations when tested in multiple in vitro systems. Systematic literature analyses identified KDR as the probable target underlying the blood pressure increase observed in patients. While the in vitro pharmacological profile of R406 suggests a lack of selectivity among kinases, a combination of classical searching and text-mining approaches rationalized the complex profile establishing linkage between off-target pharmacology and clinically observed effects. These results demonstrate the utility of in vitro pharmacological profiling for a compound in late-stage clinical development.

6.
Clin Cancer Res ; 21(10): 2367-78, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25301847

RESUMO

PURPOSE: Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease with distinct molecular subtypes. The most established subtyping approach, the "Cell of Origin" (COO) algorithm, categorizes DLBCL into activated B-cell (ABC) and germinal center B-cell (GCB)-like subgroups through gene expression profiling. Recently developed immunohistochemical (IHC) techniques and other established methodologies can deliver discordant results and have various technical limitations. We evaluated the NanoString nCounter gene expression system to address issues with current platforms. EXPERIMENTAL DESIGN: We devised a scoring system using 145 genes from published datasets to categorize DLBCL samples. After cell line validation, clinical tissue segmentation was tested using commercially available diagnostic DLBCL samples. Finally, we profiled biopsies from patients with relapsed/refractory DLBCL enrolled in the fostamatinib phase IIb clinical trial using three independent RNA expression platforms: NanoString, Affymetrix, and qNPA. RESULTS: Diagnostic samples showed a typical spread of subtypes with consistent gene expression profiles across matched fresh, frozen, and formalin-fixed paraffin-embedded tissues. Results from biopsy samples across platforms were remarkably consistent, in contrast to published IHC data. Interestingly, COO segmentation of longitudinal fostamatinib biopsies taken at initial diagnosis and then again at primary relapse showed 88% concordance (15/17), suggesting that COO designation remains stable over the course of disease progression. CONCLUSIONS: DLBCL segmentation of patient tumor samples is possible using a number of expression platforms. However, we found that NanoString offers the most flexibility and fewest limitations in regards to robust clinical tissue subtype characterization. These subtype distinctions should help guide disease prognosis and treatment options within DLBCL clinical practice.


Assuntos
Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica/métodos , Linfoma Difuso de Grandes Células B/diagnóstico , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Técnicas de Diagnóstico Molecular , Reprodutibilidade dos Testes , Transcriptoma
7.
Cancer Res ; 75(13): 2587-93, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26069246

RESUMO

Analysis of clinical trial specimens such as formalin-fixed paraffin-embedded (FFPE) tissue for molecular mechanisms of disease progression or drug response is often challenging and limited to a few markers at a time. This has led to the increasing importance of highly multiplexed assays that enable profiling of many biomarkers within a single assay. Methods for gene expression analysis have undergone major advances in biomedical research, but obtaining a robust dataset from low-quality RNA samples, such as those isolated from FFPE tissue, remains a challenge. Here, we provide a detailed evaluation of the NanoString Technologies nCounter platform, which provides a direct digital readout of up to 800 mRNA targets simultaneously. We tested this system by examining a broad set of human clinical tissues for a range of technical variables, including sensitivity and limit of detection to varying RNA quantity and quality, reagent performance over time, variability between instruments, the impact of the number of fields of view sampled, and differences between probe sequence locations and overlapping genes across CodeSets. This study demonstrates that Nanostring offers several key advantages, including sensitivity, reproducibility, technical robustness, and utility for clinical application.


Assuntos
Perfilação da Expressão Gênica/métodos , Nanotecnologia/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Perfilação da Expressão Gênica/normas , Humanos , Nanotecnologia/normas , Análise de Sequência com Séries de Oligonucleotídeos/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Mol Cancer Ther ; 11(8): 1650-60, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22679110

RESUMO

The Notch signaling pathway has been implicated in cell fate determination and differentiation in many tissues. Accumulating evidence points toward a pivotal role in blood vessel formation, and the importance of the Delta-like ligand (Dll) 4-Notch1 ligand-receptor interaction has been shown in both physiological and tumor angiogenesis. Disruption of this interaction leads to a reduction in tumor growth as a result of an increase in nonfunctional vasculature leading to poor perfusion of the tumor. MEDI0639 is an investigational human therapeutic antibody that targets Dll4 to inhibit the interaction between Dll4 and Notch1. The antibody cross-reacts to cynomolgus monkey but not mouse species orthologues. In vitro MEDI0639 inhibits the binding of Notch1 to Dll4, interacting via a novel epitope that has not been previously described. Binding to this epitope translates into MEDI0639 reversing Notch1-mediated suppression of human umbilical vein endothelial cell growth in vitro. MEDI0639 administration resulted in stimulation of tubule formation in a three-dimensional (3D) endothelial cell outgrowth assay, a phenotype driven by disruption of the Dll4-Notch signaling axis. In contrast, in a two-dimensional endothelial cell-fibroblast coculture model, MEDI0639 is a potent inhibitor of tubule formation. In vivo, MEDI0639 shows activity in a human endothelial cell angiogenesis assay promoting human vessel formation and reducing the number of vessels with smooth muscle actin-positive mural cells coverage. Collectively, the data show that MEDI0639 is a potent modulator of Dll4-Notch signaling pathway.


Assuntos
Anticorpos Monoclonais/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/metabolismo , Linhagem Celular , Mapeamento de Epitopos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos SCID , Neovascularização Patológica , Ligação Proteica , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Cancer Res ; 71(3): 1029-40, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21245093

RESUMO

Insulin-like growth factors (IGF), IGF-I and IGF-II, are small polypeptides involved in regulating cell proliferation, survival, differentiation, and transformation. IGF activities are mediated through binding and activation of IGF-1R or insulin receptor isoform A (IR-A). The role of the IGF-1R pathway in promoting tumor growth and survival is well documented. Overexpression of IGF-II and IR-A is reported in multiple types of cancer and is proposed as a potential mechanism for cancer cells to develop resistance to IGF-1R-targeting therapy. MEDI-573 is a fully human antibody that neutralizes both IGF-I and IGF-II and inhibits IGF signaling through both the IGF-1R and IR-A pathways. Here, we show that MEDI-573 blocks the binding of IGF-I and IGF-II to IGF-1R or IR-A, leading to the inhibition of IGF-induced signaling pathways and cell proliferation. MEDI-573 significantly inhibited the in vivo growth of IGF-I- or IGF-II-driven tumors. Pharmacodynamic analysis demonstrated inhibition of IGF-1R phosphorylation in tumors in mice dosed with MEDI-573, indicating that the antitumor activity is mediated via inhibition of IGF-1R signaling pathways. Finally, MEDI-573 significantly decreased (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in IGF-driven tumor models, highlighting the potential utility of (18)F-FDG-PET as a noninvasive pharmacodynamic readout for evaluating the use of MEDI-573 in the clinic. Taken together, these results demonstrate that the inhibition of IGF-I and IGF-II ligands by MEDI-573 results in potent antitumor activity and offers an effective approach to selectively target both the IGF-1R and IR-A signaling pathways.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Fator de Crescimento Insulin-Like II/imunologia , Fator de Crescimento Insulin-Like I/imunologia , Neoplasias Experimentais/tratamento farmacológico , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Feminino , Fluordesoxiglucose F18 , Humanos , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/antagonistas & inibidores , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Camundongos Knockout , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Fosforilação/efeitos dos fármacos , Tomografia por Emissão de Pósitrons , Isoformas de Proteínas , Compostos Radiofarmacêuticos , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa