Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; : 119524, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972338

RESUMO

This review offers a detailed examination of the current landscape of radio frequency (RF) electromagnetic field (EMF) assessment tools, ranging from spectrum analyzers and broadband field meters to area monitors and custom-built devices. The discussion encompasses both standardized and non-standardized measurement protocols, shedding light on the various methods employed in this domain. Furthermore, the review highlights the prevalent use of mobile apps for characterizing 5G-NR radio network data. A growing need for low-cost measurement devices is observed, commonly referred to as "sensors" or "sensor nodes," that are capable of enduring diverse environmental conditions. These sensors play a crucial role in both microenvironmental surveys and individual exposures, enabling stationary, mobile, and personal exposure assessments based on body-worn sensors, across wider geographical areas. This review revealed a notable need for cost-effective and long-lasting sensors, whether for individual exposure assessments, mobile (vehicle-integrated) measurements, or incorporation into distributed sensor networks. However, there is a lack of comprehensive information on existing custom-developed RF-EMF measurement tools, especially in terms of measuring uncertainty. Additionally, there is a need for real-time, fast-sampling solutions to understand the highly irregular temporal variations EMF distribution in next-generation networks. Given the diversity of tools and methods, a comprehensive comparison is crucial to determine the necessary statistical tools for aggregating the available measurement data.

2.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400278

RESUMO

Commercial, high-tech upper limb prostheses offer a lot of functionality and are equipped with high-grade control mechanisms. However, they are relatively expensive and are not accessible to the majority of amputees. Therefore, more affordable, accessible, open-source, and 3D-printable alternatives are being developed. A commonly proposed approach to control these prostheses is to use bio-potentials generated by skeletal muscles, which can be measured using surface electromyography (sEMG). However, this control mechanism either lacks accuracy when a single sEMG sensor is used or involves the use of wires to connect to an array of multiple nodes, which hinders patients' movements. In order to mitigate these issues, we have developed a circular, wireless s-EMG array that is able to collect sEMG potentials on an array of electrodes that can be spread (not) uniformly around the circumference of a patient's arm. The modular sEMG system is combined with a Bluetooth Low Energy System on Chip, motion sensors, and a battery. We have benchmarked this system with a commercial, wired, state-of-the-art alternative and found an r = 0.98 (p < 0.01) Spearman correlation between the root-mean-squared (RMS) amplitude of sEMG measurements measured by both devices for the same set of 20 reference gestures, demonstrating that the system is accurate in measuring sEMG. Additionally, we have demonstrated that the RMS amplitudes of sEMG measurements between the different nodes within the array are uncorrelated, indicating that they contain independent information that can be used for higher accuracy in gesture recognition. We show this by training a random forest classifier that can distinguish between 6 gestures with an accuracy of 97%. This work is important for a large and growing group of amputees whose quality of life could be improved using this technology.


Assuntos
Amputados , Membros Artificiais , Humanos , Eletromiografia , Qualidade de Vida , Músculo Esquelético/fisiologia , Gestos , Mãos/fisiologia
3.
Environ Health ; 20(1): 36, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794922

RESUMO

BACKGROUND: The general population is exposed to Radio-Frequency Electromagnetic Fields (RF-EMFs) used by telecommunication networks. Previous studies developed methods to assess this exposure. These methods will be inadequate to accurately assess exposure in 5G technologies or other wireless technologies using adaptive antennas. This is due to the fact that 5G NR (new radio) base stations will focus actively on connected users, resulting in a high spatio-temporal variations in the RF-EMFs. This increases the measurement uncertainty in personal measurements of RF-EMF exposure. Furthermore, a user's exposure from base stations will be dependent on the amount of data usage, adding a new component to the auto-induced exposure, which is often omitted in current studies. GOALS: The objective of this paper is to develop a general study protocol for future personal RF-EMF exposure research adapted to 5G technologies. This protocol will include the assessment of auto-induced exposure of both a user's own devices and the networks' base stations. METHOD: This study draws from lessons learned from previous RF-EMF exposure research and current knowledge on 5G technologies, including studies simulating 5G NR base stations and measurements around 5G NR test sites. RESULTS: To account for auto-induced exposure, an activity-based approach is introduced. In survey studies, an RF-EMF sensor is fixed on the participants' mobile device(s). Based on the measured power density, GPS data and movement and proximity sensors, different activities can be clustered and the exposure during each activity is evaluated. In microenvironmental measurements, a trained researcher performs measurements in predefined microenvironments with a mobile device equipped with the RF-EMF sensor. The mobile device is programmed to repeat a sequence of data transmission scenarios (different amounts of uplink and downlink data transmissions). Based on simulations, the amount of exposure induced in the body when the user device is at a certain location relative to the body, can be evaluated. CONCLUSION: Our protocol addresses the main challenges to personal exposure measurement introduced by 5G NR. A systematic method to evaluate a user's auto-induced exposure is introduced.


Assuntos
Redes de Comunicação de Computadores , Campos Eletromagnéticos , Monitoramento Ambiental/métodos , Ondas de Rádio , Computadores de Mão , Humanos
4.
Environ Res ; 175: 351-366, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31150934

RESUMO

Personal exposure to Radio-Frequency Electromagnetic Fields (RF-EMFs) was studied using personal measurements in five different microenvironments in each of five cities (Brussels, Antwerp, Ghent, Bruges and Hasselt) in Flanders, Belgium. These measurements were carried out by two researchers using on-body calibrated personal exposimeters. In three out of the five studied cities (Brussels, Ghent and Bruges), temporal aspects of personal exposure to RF-EMFs were studied as well. Measurements during and outside of rush hours (7:00-9:15 and 16:30-19:00) were compared. Likewise, measurements were executed during night time and compared to the ones measured during working hours. Representativeness and repeatability of the measurement method was studied as well. The highest mean total exposure was found in Brussels (2.63 mW/m2), the most densely populated city in this study. However, we measured higher downlink exposure in Antwerp than in Brussels, which might be an effect of the stronger legislation on base stations in Brussels. The measurements and used protocol were found to be both repeatable over time (r = 0.95 for median total exposure) and representative for the studied microenvironments in terms of path selection (r = 0.88 for median total exposure). Finally, in 10 out of the 13 on-body calibrated frequency bands we found that the measurement devices underestimate the intensity of the incident RF-EMFs with median underestimations up to 68%.


Assuntos
Campos Eletromagnéticos , Exposição Ambiental , Ondas de Rádio , Bélgica , Telefone Celular , Cidades
5.
Radiat Prot Dosimetry ; 190(4): 400-411, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32909042

RESUMO

The goal of this paper is to experimentally assess the field enhancement and hotspot size of radio frequency electromagnetic fields created by the Maximum Ratio Combining (MRC) precoding scheme using lab measurements at 3.5, 5.5 and 11 GHz. MRC is an adaptive precoding scheme used by Massive Multiple Input Multiple Output systems, one of the enabling techniques of the fifth generation of telecommunications (5G). A virtual antenna array was used to compare MRC with two passive precoding schemes: the Random Phase Model (RPM) and the Centerline Beam Model (CBM). The field enhancement going from CBM to MRC was largest in obstructed line of sight (OLOS), ranging from 1.9 to 7.4 dB. The field enhancement going from RPM to MRC was about 9.5 dB across frequency bands in both line of sight (LOS) and OLOS. The hotspot size, quantified by the full width at half maximum (FWHM), ranged from 0.5 wavelengths to one wavelength.


Assuntos
Campos Eletromagnéticos , Ondas de Rádio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa