Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562416

RESUMO

The trace element selenium (Se) is a crucial element for many living organisms, including soil microorganisms, plants and animals, including humans. Generally, in Nature Se is taken up in the living cells of microorganisms, plants, animals and humans in several inorganic forms such as selenate, selenite, elemental Se and selenide. These forms are converted to organic forms by biological process, mostly as the two selenoamino acids selenocysteine (SeCys) and selenomethionine (SeMet). The biological systems of plants, animals and humans can fix these amino acids into Se-containing proteins by a modest replacement of methionine with SeMet. While the form SeCys is usually present in the active site of enzymes, which is essential for catalytic activity. Within human cells, organic forms of Se are significant for the accurate functioning of the immune and reproductive systems, the thyroid and the brain, and to enzyme activity within cells. Humans ingest Se through plant and animal foods rich in the element. The concentration of Se in foodstuffs depends on the presence of available forms of Se in soils and its uptake and accumulation by plants and herbivorous animals. Therefore, improving the availability of Se to plants is, therefore, a potential pathway to overcoming human Se deficiencies. Among these prospective pathways, the Se-biofortification of plants has already been established as a pioneering approach for producing Se-enriched agricultural products. To achieve this desirable aim of Se-biofortification, molecular breeding and genetic engineering in combination with novel agronomic and edaphic management approaches should be combined. This current review summarizes the roles, responses, prospects and mechanisms of Se in human nutrition. It also elaborates how biofortification is a plausible approach to resolving Se-deficiency in humans and other animals.


Assuntos
Biofortificação , Ácido Selênico/metabolismo , Selênio/metabolismo , Selenoproteínas/metabolismo , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Humanos , Plantas/metabolismo , Ácido Selênico/química , Selênio/química , Selenocisteína/química , Selenocisteína/metabolismo , Selenometionina/química , Selenometionina/metabolismo , Selenoproteínas/biossíntese , Solo/química
2.
Front Plant Sci ; 14: 1123655, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950360

RESUMO

Micronutrient malnutrition is a serious threat to the developing world's human population, which largely relies on a cereal-based diet that lacks diversity and micronutrients. Besides major cereals, millets represent the key sources of energy, protein, vitamins, and minerals for people residing in the dryland tropics and drought-prone areas of South Asia and sub-Saharan Africa. Millets serve as multi-purpose crops with several salient traits including tolerance to abiotic stresses, adaptation to diverse agro-ecologies, higher productivity in nutrient-poor soils, and rich nutritional characteristics. Considering the potential of millets in empowering smallholder farmers, adapting to changing climate, and transforming agrifood systems, the year 2023 has been declared by the United Nations as the International Year of Millets. In this review, we highlight recent genetic and genomic innovations that can be explored to enhance grain micronutrient density in millets. We summarize the advances made in high-throughput phenotyping to accurately measure grain micronutrient content in cereals. We shed light on genetic diversity in millet germplasm collections existing globally that can be exploited for developing nutrient-dense and high-yielding varieties to address food and nutritional security. Furthermore, we describe the progress made in the fields of genomics, proteomics, metabolomics, and phenomics with an emphasis on enhancing the grain nutritional content for designing competitive biofortified varieties for the future. Considering the close genetic-relatedness within cereals, upcoming research should focus on identifying the genetic and genomic basis of nutritional traits in millets and introgressing them into major cereals through integrated omics approaches. Recent breakthroughs in the genome editing toolbox would be crucial for mainstreaming biofortification in millets.

3.
Sci Rep ; 11(1): 13730, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215789

RESUMO

With progressive climate change and the associated increase in mean temperature, heat stress tolerance has emerged as one of the key traits in the product profile of the maize breeding pipeline for lowland tropics. The present study aims to identify the genomic regions associated with heat stress tolerance in tropical maize. An association mapping panel, called the heat tolerant association mapping (HTAM) panel, was constituted by involving a total of 543 tropical maize inbred lines from diverse genetic backgrounds, test-crossed and phenotyped across nine locations in South Asia under natural heat stress. The panel was genotyped using a genotyping-by-sequencing (GBS) platform. Considering the large variations in vapor pressure deficit (VPD) at high temperature (Tmax) across different phenotyping locations, genome-wide association study (GWAS) was conducted separately for each location. The individual location GWAS identified a total of 269 novel significant single nucleotide polymorphisms (SNPs) for grain yield under heat stress at a p value of < 10-5. A total of 175 SNPs were found in 140 unique gene models implicated in various biological pathway responses to different abiotic stresses. Haplotype trend regression (HTR) analysis of the significant SNPs identified 26 haplotype blocks and 96 single SNP variants significant across one to five locations. The genomic regions identified based on GWAS and HTR analysis considering genomic region x environment interactions are useful for breeding efforts aimed at developing heat stress resilient maize cultivars for current and future climatic conditions through marker-assisted introgression into elite genetic backgrounds and/or genome-wide selection.


Assuntos
Genoma de Planta , Termotolerância/genética , Zea mays/genética , Alelos , Estudo de Associação Genômica Ampla , Haplótipos , Clima Tropical
4.
Sci Rep ; 8(1): 366, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321632

RESUMO

Globally, downy mildews are among the important foliar diseases of maize that cause significant yield losses. We conducted a genome-wide association study for sorghum downy mildew (SDM; Peronosclerospora sorghi) resistance in a panel of 368 inbred lines adapted to the Asian tropics. High density SNPs from Genotyping-by-sequencing were used in GWAS after controlling for population structure and kinship in the panel using a single locus mixed model. The study identified a set of 26 SNPs that were significantly associated with SDM resistance, with Bonferroni corrected P values ≤ 0.05. Among all the identified SNPs, the minor alleles were found to be favorable to SDM resistance in the mapping panel. Trend regression analysis with 16 independent genetic variants including 12 SNPs and four haplotype blocks identified SNP S2_6154311 on chromosome 2 with P value 2.61E-24 and contributing 26.7% of the phenotypic variation. Six of the SNPs/haplotypes were within the same chromosomal bins as the QTLs for SDM resistance mapped in previous studies. Apart from this, eight novel genomic regions for SDM resistance were identified in this study; they need further validation before being applied in the breeding pipeline. Ten SNPs identified in this study were co-located in reported mildew resistance genes.


Assuntos
Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Zea mays/genética , Zea mays/microbiologia , Alelos , Genótipo , Haplótipos , Desequilíbrio de Ligação , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa