Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(22): e2202647119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35605121

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PIP2) clustering is a key component in cell signaling, yet little is known about the atomic-level features of this phenomenon. Network-theoretic analysis of multimicrosecond atomistic simulations of PIP2 containing asymmetric bilayers under protein-free conditions, presented here, reveals how design principles of PIP2 clustering are determined by the specific cation effects. Ca2+ generates large clusters (6% are pentamer or larger) by adding existing PIP2 dimers formed by strong O‒Ca2+‒O bridging interactions of unprotonated P4/P5 phosphates. In contrast, monovalent cations (Na+ and K+) form smaller and less-stable clusters by preferentially adding PIP2 monomers. Despite having the same net charge, the affinity to P4/P5 is higher for Na+, while affinity toward glycerol P1 is higher for K+. Consequently, a mixture of K+ and Ca2+ (as would be produced by Ca2+ influx) synergistically yields larger and more stable clusters than Ca2+ alone due to the different binding preferences of these cations.


Assuntos
Cálcio , Fosfatidilinositol 4,5-Difosfato , Transdução de Sinais , Cálcio/metabolismo , Cátions , Peptídeos e Proteínas de Sinalização Intracelular , Canais Iônicos , Fosfatos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Potássio
2.
Biophys J ; 122(6): 1094-1104, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36739477

RESUMO

Lipid membrane viscosity is critical to biological function. Bacterial cells grown in different environments alter their lipid composition in order to maintain a specific viscosity, and membrane viscosity has been linked to the rate of cellular respiration. To understand the factors that determine the viscosity of a membrane, we ran equilibrium all-atom simulations of single component lipid bilayers and calculated their viscosities. The viscosity was calculated via a Green-Kubo relation, with the stress-tensor autocorrelation function modeled by a stretched exponential function. By simulating a series of lipids at different temperatures, we establish the dependence of viscosity on several aspects of lipid chemistry, including hydrocarbon chain length, unsaturation, and backbone structure. Sphingomyelin is found to have a remarkably high viscosity, roughly 20 times that of DPPC. Furthermore, we find that inclusion of the entire range of the dispersion interaction increases viscosity by up to 140%. The simulated viscosities are similar to experimental values obtained from the rotational dynamics of small chromophores and from the diffusion of integral membrane proteins but significantly lower than recent measurements based on the deformation of giant vesicles.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Viscosidade , Proteínas de Membrana/química
3.
Chem Rev ; 119(9): 5954-5997, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30747524

RESUMO

This Review illustrates the evaluation of permeability of lipid membranes from molecular dynamics (MD) simulation primarily using water and oxygen as examples. Membrane entrance, translocation, and exit of these simple permeants (one hydrophilic and one hydrophobic) can be simulated by conventional MD, and permeabilities can be evaluated directly by Fick's First Law, transition rates, and a global Bayesian analysis of the inhomogeneous solubility-diffusion model. The assorted results, many of which are applicable to simulations of nonbiological membranes, highlight the limitations of the homogeneous solubility diffusion model; support the utility of inhomogeneous solubility diffusion and compartmental models; underscore the need for comparison with experiment for both simple solvent systems (such as water/hexadecane) and well-characterized membranes; and demonstrate the need for microsecond simulations for even simple permeants like water and oxygen. Undulations, subdiffusion, fractional viscosity dependence, periodic boundary conditions, and recent developments in the field are also discussed. Last, while enhanced sampling methods and increasingly sophisticated treatments of diffusion add substantially to the repertoire of simulation-based approaches, they do not address directly the critical need for force fields with polarizability and multipoles, and constant pH methods.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Membrana Celular/química , Membrana Celular/metabolismo , Modelos Biológicos , Transporte Biológico , Simulação por Computador , Humanos , Simulação de Dinâmica Molecular , Termodinâmica
4.
J Chem Phys ; 153(12): 124107, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33003739

RESUMO

Permeation of many small molecules through lipid bilayers can be directly observed in molecular dynamics simulations on the nano- and microsecond timescale. While unbiased simulations provide an unobstructed view of the permeation process, their feasibility for computing permeability coefficients depends on various factors that differ for each permeant. The present work studies three small molecules for which unbiased simulations of permeation are feasible within less than a microsecond, one hydrophobic (oxygen), one hydrophilic (water), and one amphiphilic (ethanol). Permeabilities are computed using two approaches: counting methods and a maximum-likelihood estimation for the inhomogeneous solubility diffusion (ISD) model. Counting methods yield nearly model-free estimates of the permeability for all three permeants. While the ISD-based approach is reasonable for oxygen, it lacks precision for water due to insufficient sampling and results in misleading estimates for ethanol due to invalid model assumptions. It is also demonstrated that simulations using a Langevin thermostat with collision frequencies of 1/ps and 5/ps yield oxygen permeabilities and diffusion constants that are lower than those using Nosé-Hoover by statistically significant margins. In contrast, permeabilities from trajectories generated with Nosé-Hoover and the microcanonical ensemble do not show statistically significant differences. As molecular simulations become more affordable and accurate, calculation of permeability for an expanding range of molecules will be feasible using unbiased simulations. The present work summarizes theoretical underpinnings, identifies pitfalls, and develops best practices for such simulations.

5.
Biophys J ; 107(1): 134-45, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24988348

RESUMO

The C36 CHARMM lipid force field has been extended to include sphingolipids, via a combination of high-level quantum mechanical calculations on small molecule fragments, and validation by extensive molecular dynamics simulations on N-palmitoyl and N-stearoyl sphingomyelin. NMR data on these two molecules from several studies in bilayers and micelles played a strong role in the development and testing of the force field parameters. Most previous force fields for sphingomyelins were developed before the availability of the detailed NMR data and relied on x-ray diffraction of bilayers alone for the validation; these are shown to be too dense in the bilayer plane based on published chain order parameter data from simulations and experiments. The present simulations reveal O-H:::O-P intralipid hydrogen bonding occurs 99% of the time, and interlipid N-H:::O=C (26-29%, depending on the lipid) and N-H:::O-H (17-19%). The interlipid hydrogen bonds are long lived, showing decay times of 50 ns, and forming strings of lipids, and leading to reorientational correlation time of nearly 100 ns. The spontaneous radius of curvature for pure N-palmitoyl sphingomyelin bilayers is estimated to be 43-100 Å, depending on the assumptions made in assigning a bending constant; this unusual positive curvature for a two-tailed neutral lipid is likely associated with hydrogen bond networks involving the NH of the sphingosine group.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Esfingomielinas/química , Ligação de Hidrogênio
6.
J Am Chem Soc ; 136(39): 13582-5, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25202918

RESUMO

The bilayer bending modulus (Kc) is one of the most important physical constants characterizing lipid membranes, but precisely measuring it is a challenge, both experimentally and computationally. Experimental measurements on chemically identical bilayers often differ depending upon the techniques employed, and robust simulation results have previously been limited to coarse-grained models (at varying levels of resolution). This Communication demonstrates the extraction of Kc from fully atomistic molecular dynamics simulations for three different single-component lipid bilayers (DPPC, DOPC, and DOPE). The results agree quantitatively with experiments that measure thermal shape fluctuations in giant unilamellar vesicles. Lipid tilt, twist, and compression moduli are also reported.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular
7.
J Am Chem Soc ; 136(9): 3491-504, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24410116

RESUMO

While antimicrobial peptides (AMPs) have been widely investigated as potential therapeutics, high-resolution structures obtained under biologically relevant conditions are lacking. Here, the high-resolution structures of the homologous 22-residue long AMPs piscidin 1 (p1) and piscidin 3 (p3) are determined in fluid-phase 3:1 phosphatidylcholine/phosphatidylglycerol (PC/PG) and 1:1 phosphatidylethanolamine/phosphatidylglycerol (PE/PG) bilayers to identify molecular features important for membrane destabilization in bacterial cell membrane mimics. Structural refinement of (1)H-(15)N dipolar couplings and (15)N chemical shifts measured by oriented sample solid-state NMR and all-atom molecular dynamics (MD) simulations provide structural and orientational information of high precision and accuracy about these interfacially bound α-helical peptides. The tilt of the helical axis, τ, is between 83° and 93° with respect to the bilayer normal for all systems and analysis methods. The average azimuthal rotation, ρ, is 235°, which results in burial of hydrophobic residues in the bilayer. The refined NMR and MD structures reveal a slight kink at G13 that delineates two helical segments characterized by a small difference in their τ angles (<10°) and significant difference in their ρ angles (~25°). Remarkably, the kink, at the end of a G(X)4G motif highly conserved among members of the piscidin family, allows p1 and p3 to adopt ρ angles that maximize their hydrophobic moments. Two structural features differentiate the more potent p1 from p3: p1 has a larger ρ angle and less N-terminal fraying. The peptides have comparable depths of insertion in PC/PG, but p3 is 1.2 Å more deeply inserted than p1 in PE/PG. In contrast to the ideal α-helical structures typically assumed in mechanistic models of AMPs, p1 and p3 adopt disrupted α-helical backbones that correct for differences in the amphipathicity of their N- and C-ends, and their centers of mass lie ~1.2-3.6 Å below the plane defined by the C2 atoms of the lipid acyl chains.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Peixes/química , Bicamadas Lipídicas/química , Interações Hidrofóbicas e Hidrofílicas , Imersão , Cristais Líquidos/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Estrutura Secundária de Proteína
8.
J Comput Chem ; 35(27): 1997-2004, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25130509

RESUMO

CHARMM-GUI Membrane Builder, http://www.charmm-gui.org/input/membrane, is a web-based user interface designed to interactively build all-atom protein/membrane or membrane-only systems for molecular dynamics simulations through an automated optimized process. In this work, we describe the new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems, including (1) addition of new lipid types, such as phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol, yielding more than 180 lipid types, (2) enhanced building procedure for lipid packing around protein, (3) reliable algorithm to detect lipid tail penetration to ring structures and protein surface, (4) distance-based algorithm for faster initial ion displacement, (5) CHARMM inputs for P21 image transformation, and (6) NAMD equilibration and production inputs. The robustness of these new features is illustrated by building and simulating a membrane model of the polar and septal regions of E. coli membrane, which contains five lipid types: CL lipids with two types of acyl chains and phosphatidylethanolamine lipids with three types of acyl chains. It is our hope that CHARMM-GUI Membrane Builder becomes a useful tool for simulation studies to better understand the structure and dynamics of proteins and lipids in realistic biological membrane environments.


Assuntos
Membrana Celular/química , Biologia Computacional , Simulação de Dinâmica Molecular , Software , Interface Usuário-Computador , Algoritmos , Gráficos por Computador , Escherichia coli/química , Internet , Lipídeos/química , Modelos Moleculares , Estrutura Molecular , Proteínas/química
9.
J Phys Chem B ; 128(9): 2134-2143, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38393820

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PIP2) is a critical lipid for cellular signaling. The specific phosphorylation of the inositol ring controls protein binding as well as clustering behavior. Two popular models to describe ion-mediated clustering of PIP2 are Martini3 (M3) and CHARMM36 (C36). Molecular dynamics simulations of PIP2-containing bilayers in solutions of potassium chloride, sodium chloride, and calcium chloride, and at two different resolutions are performed to understand the aggregation and the model parameters that drive it. The average M3 clusters of PIP2 in bilayers of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and PIP2 bilayers in the presence of K+, Na+, or Ca2+ contained 2.2, 2.6, and 6.4 times more PIP2 than C36 clusters, respectively. Indeed, the Ca2+-containing systems often formed a single large aggregate. Reparametrization of the M3 ion-phosphate Lennard-Jones interaction energies to reproduce experimental osmotic pressure of sodium dimethyl phosphate (DMP), K[DMP], and Ca[DMP]2 solutions, the same experimental target as C36, yielded comparably sized PIP2 clusters for the two models. Furthermore, C36 and the modified M3 predict similar saturation of the phosphate groups with increasing Ca2+, although the coarse-grained model does not capture the cooperativity between K+ and Ca2+. This characterization of the M3 behavior in the presence of monovalent and divalent ions lays a foundation to study cation/protein/PIP2 clustering.


Assuntos
Simulação de Dinâmica Molecular , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositol 4,5-Difosfato/química , Cátions , Sódio
10.
Proteins ; 81(3): 365-76, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23042146

RESUMO

All-atom simulations are carried out on ErbB1/B2 and EphA1 transmembrane helix dimers in lipid bilayers starting from their solution/DMPC bicelle NMR structures. Over the course of microsecond trajectories, the structures remain in close proximity to the initial configuration and satisfy the majority of experimental tertiary contact restraints. These results further validate CHARMM protein/lipid force fields and simulation protocols on Anton. Separately, dimer conformations are generated using replica exchange in conjunction with an implicit solvent and lipid representation. The implicit model requires further improvement, and this study investigates whether lengthy all-atom molecular dynamics simulations can alleviate the shortcomings of the initial conditions. The simulations correct many of the deficiencies. For example, excessive helix twisting is eliminated over a period of hundreds of nanoseconds. The helix tilt, crossing angles, and dimer contacts approximate those of the NMR-derived structure, although the detailed contact surface remains off-set for one of two helices in both systems. Hence, even microsecond simulations are not long enough for extensive helix rotations. The alternate structures can be rationalized with reference to interaction motifs and may represent still sought after receptor states that are important in ErbB1/B2 and EphA1 signaling.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Multimerização Proteica , Receptor EphA1/química , Receptor ErbB-2/química , Sequência de Aminoácidos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Solventes/química , Eletricidade Estática , Fatores de Tempo
11.
J Chem Theory Comput ; 19(9): 2590-2605, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37071552

RESUMO

Accurate empirical force fields of lipid molecules are a critical component of molecular dynamics simulation studies aimed at investigating properties of monolayers, bilayers, micelles, vesicles, and liposomes, as well as heterogeneous systems, such as protein-membrane complexes, bacterial cell walls, and more. While the majority of lipid force field-based simulations have been performed using pairwise-additive nonpolarizable models, advances have been made in the development of the polarizable force field based on the classical Drude oscillator model. In the present study, we undertake further optimization of the Drude lipid force field, termed Drude2023, including improved treatment of the phosphate and glycerol linker region of PC and PE headgroups, additional optimization of the alkene group in monounsaturated lipids, and inclusion of long-range Lennard-Jones interactions using the particle-mesh Ewald method. Initial optimization targeted quantum mechanical (QM) data on small model compounds representative of the linker region. Subsequent optimization targeted QM data on larger model compounds, experimental data, and dihedral potentials of mean force from the CHARMM36 additive lipid force field using a parameter reweighting protocol. The use of both experimental and QM target data during the reweighting protocol is shown to produce physically reasonable parameters that reproduce a collection of experimental observables. Target data for optimization included surface area/lipid for DPPC, DSPC, DMPC, and DLPC bilayers and nuclear magnetic resonance (NMR) order parameters for DPPC bilayers. Validation data include prediction of membrane thickness, scattering form factors, electrostatic potential profiles, compressibility moduli, surface area per lipid, water permeability, NMR T1 relaxation times, diffusion constants, and monolayer surface tensions for a variety of saturated and unsaturated lipid mono- and bilayers. Overall, the agreement with experimental data is quite good, though the results are less satisfactory for the NMR T1 relaxation times for carbons near the ester groups. Notable improvements compared to the additive C36 force field were obtained for membrane dipole potentials, lipid diffusion coefficients, and water permeability with the exception of monounsaturated lipid bilayers. It is anticipated that the optimized polarizable Drude2023 force field will help generate more accurate molecular simulations of pure bilayers and heterogeneous systems containing membranes, advancing our understanding of the role of electronic polarization in these systems.


Assuntos
Simulação de Dinâmica Molecular , Água , Água/química , Difusão , Lipídeos/química
12.
J Phys Chem B ; 125(42): 11687-11696, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34652160

RESUMO

Potential energy parameters for α-methyl amino acids were generated with ab initio calculations on α-methyl-N-acetylalanyl-N'-methylamide (the α-methyl "alanine dipeptide") which served as an input to a grid-based correction to the backbone torsional potential (known as CMAP) consistent with the CHARMM36m additive protein force field. The new parameters were validated by comparison with experimentally determined helicities of the 22 residue C-terminal peptide (H10) from apolipoprotein A1 and five α-methylated variants in water and 0.3:0.7 trifluoroethanol (TFE)/water. Conventional molecular dynamics simulation totaling 30 µs for each peptide is in overall good agreement with the experiment, including the increased helicity in 30% TFE. An additional 500 ns of simulation using two-dimensional dihedral biasing (bpCMAP) replica exchange reduced left-handed conformations, increased right-handed helices, and thereby mostly decreased agreement with the experiment. Analysis of side chain-side chain salt bridges suggests that the overestimation of the helical content may be, in part, due to such interactions. The increased helicity of the peptides in 30% TFE arises from decreased hydrogen bonding of the backbone atoms to water and a concomitant increase in intramolecular backbone hydrogen bonds.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Aminoácidos , Ligação de Hidrogênio , Trifluoretanol
13.
J Chem Theory Comput ; 17(3): 1581-1595, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33620194

RESUMO

Long-range Lennard-Jones (LJ) interactions have been incorporated into the CHARMM36 (C36) lipid force field (FF) using the LJ particle-mesh Ewald (LJ-PME) method in order to remove the inconsistency of bilayer and monolayer properties arising from the exclusion of long-range dispersion [Yu, Y.; Semi-automated Optimization of the CHARMM36 Lipid Force Field to Include Explicit Treatment of Long-Range Dispersion. J. Chem. Theory Comput. 2021, 10.1021/acs.jctc.0c01326. (preceding article in this issue)]. The new FF is denoted C36/LJ-PME. While the first optimization was based on three phosphatidylcholines (PCs), this work extends the validation and parametrization to more lipids including PC, phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and ether lipids. The agreement with experimental structure data is excellent for PC, PE, and ether lipids. C36/LJ-PME also compares favorably with scattering data of PG bilayers but less so with NMR deuterium order parameters of 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) at 303.15 K, indicating a need for future optimization regarding PG-specific parameters. Frequency dependence of NMR T1 spin-lattice relaxation times is well-described by C36/LJ-PME, and the overall agreement with experiment is comparable to C36. Lipid diffusion is slower than C36 due to the added long-range dispersion causing a higher viscosity, although it is still too fast compared to experiment after correction for periodic boundary conditions. When using a 10 Å real-space cutoff, the simulation speed of C36/LJ-PME is roughly equal to C36. While more lipids will be incorporated into the FF in the future, C36/LJ-PME can be readily used for common lipids and extends the capability of the CHARMM FF by supporting monolayers and eliminating the cutoff dependence.

14.
J Chem Theory Comput ; 17(3): 1562-1580, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33620214

RESUMO

The development of the CHARMM lipid force field (FF) can be traced back to the early 1990s with its current version denoted CHARMM36 (C36). The parametrization of C36 utilized high-level quantum mechanical data and free energy calculations of model compounds before parameters were manually adjusted to yield agreement with experimental properties of lipid bilayers. While such manual fine-tuning of FF parameters is based on intuition and trial-and-error, automated methods can identify beneficial modifications of the parameters via their sensitivities and thereby guide the optimization process. This work introduces a semi-automated approach to reparametrize the CHARMM lipid FF with consistent inclusion of long-range dispersion through the Lennard-Jones particle-mesh Ewald (LJ-PME) approach. The optimization method is based on thermodynamic reweighting with regularization with respect to the C36 set. Two independent optimizations with different topology restrictions are presented. Targets of the optimizations are primarily liquid crystalline phase properties of lipid bilayers and the compression isotherm of monolayers. Pair correlation functions between water and lipid functional groups in aqueous solution are also included to address headgroup hydration. While the physics of the reweighting strategy itself is well-understood, applying it to heterogeneous, complex anisotropic systems poses additional challenges. These were overcome through careful selection of target properties and reweighting settings allowing for the successful incorporation of the explicit treatment of long-range dispersion, and we denote the newly optimized lipid force field as C36/LJ-PME. The current implementation of the optimization protocol will facilitate the future development of the CHARMM and related lipid force fields.

15.
J Phys Chem B ; 124(25): 5186-5200, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32468822

RESUMO

We have determined the fluid bilayer structure of palmitoyl sphingomyelin (PSM) and stearoyl sphingomyelin (SSM) by simultaneously analyzing small-angle neutron and X-ray scattering data. Using a newly developed scattering density profile (SDP) model for sphingomyelin lipids, we report structural parameters including the area per lipid, total bilayer thickness, and hydrocarbon thickness, in addition to lipid volumes determined by densitometry. Unconstrained all-atom simulations of PSM bilayers at 55 °C using the C36 CHARMM force field produced a lipid area of 56 Å2, a value that is 10% lower than the one determined experimentally by SDP analysis (61.9 Å2). Furthermore, scattering form factors calculated from the unconstrained simulations were in poor agreement with experimental form factors, even though segmental order parameter (SCD) profiles calculated from the simulations were in relatively good agreement with SCD profiles obtained from NMR experiments. Conversely, constrained area simulations at 61.9 Å2 resulted in good agreement between the simulation and experimental scattering form factors, but not with SCD profiles from NMR. We discuss possible reasons for the discrepancies between these two types of data that are frequently used as validation metrics for molecular dynamics force fields.


Assuntos
Bicamadas Lipídicas , Esfingomielinas , Simulação de Dinâmica Molecular , Estrutura Molecular , Nêutrons , Espalhamento a Baixo Ângulo , Difração de Raios X , Raios X
16.
Biophys J ; 97(1): 155-63, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19580753

RESUMO

Molecular dynamics (MD) simulations of phosphatidylinositol (4,5)-bisphosphate (PIP2) and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC) bilayers indicate that the inositol rings are tilted approximately 40 degrees with respect to the bilayer surface, as compared with 17 degrees for the P-N vector of POPC. Multiple minima were obtained for the ring twist (analogous to roll for an airplane). The phosphates at position 1 of PIP2 and PIP3 are within an Angström of the plane formed by the phosphates of POPC; lipids in the surrounding shell are depressed by 0.5-0.8 A, but otherwise the phosphoinositides do not substantially perturb the bilayer. Finite size artifacts for ion distributions are apparent for systems of approximately 26 waters/lipid, but, based on simulations with a fourfold increase of the aqueous phase, the phosphoinositide positions and orientations do not show significant size effects. Electrostatic potentials evaluated from Poisson-Boltzmann (PB) calculations show a strong dependence of potential height and ring orientation, with the maxima on the -25 mV surfaces (17.1 +/- 0.1 A for PIP2 and 19.4 +/- 0.3 A for PIP3) occurring near the most populated orientations from MD. These surfaces are well above the background height of 10 A estimated for negatively charged cell membranes, as would be expected for lipids involved in cellular signaling. PB calculations on microscopically flat bilayers yield similar maxima as the MD-based (microscopically rough) systems, but show less fine structure and do not clearly indicate the most probable regions. Electrostatic free energies of interaction with pentalysine are also similar for the rough and flat systems. These results support the utility of a rigid/flat bilayer model for PB-based studies of PIP2 and PIP3 as long as the orientations are judiciously chosen.


Assuntos
Simulação por Computador , Bicamadas Lipídicas/química , Modelos Químicos , Fosfatidilcolinas/química , Fosfatidilinositol 4,5-Difosfato/química , Fosfatos de Fosfatidilinositol/química , Cloretos/química , Modelos Moleculares , Sódio/química , Eletricidade Estática , Propriedades de Superfície , Fatores de Tempo
17.
J Phys Chem B ; 113(17): 5855-62, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19351117

RESUMO

3D-IPS/DFFT is an extension of the three-dimensional isotropic periodic sum (3D-IPS) for evaluation of electrostatic and Lennard-Jones interactions in heterogeneous systems; it utilizes a discrete fast Fourier transform (DFFT) for efficient calculation of the IPS potential with a large local region radius. The method is demonstrated to be highly accurate for simple bulk fluids, liquid/liquid and liquid/vapor interfaces, and lipid bilayers and monolayers. Values for r(C) (the cutoff distance for direct evaluation of pairs) and R(C) (the local region radius) equal to 10 A and twice the longest edge of the periodic cell, respectively, provide excellent efficiency and accuracy. Dimyristoylphosphatidylcholine (DMPC) monolayers simulated with the CHARMM (Chemistry at HARvard Molecular Mechanics) C27r lipid parameter set and 3D-IPS/DFFT yield surface tensions approximately 8 dyn/cm higher than those simulated using particle mesh Ewald (PME), and with experiment. In contrast, surface tensions for DMPC bilayers are 16 dyn/cm/leaflet with both 3D-IPS/DFFT (r(C) = 10 and 12 A) and PME (r(C) = 12 A). This indicates that PME (r(C) = 12 A) may be used for simulations of bilayers, but not monolayers, and that the large bilayer surface tension arising from C27r is incorrect.


Assuntos
Simulação por Computador , Dimiristoilfosfatidilcolina/química , Análise de Fourier , Bicamadas Lipídicas/química , Membranas Artificiais , Modelos Químicos , Eletricidade Estática , Tensão Superficial
18.
J Phys Chem B ; 123(12): 2697-2709, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30836006

RESUMO

In addition to obtaining the highly precise volumes of lipids in lipid bilayers, it has been desirable to obtain the volumes of parts of each lipid, such as the methylenes and terminal methyls on the hydrocarbon chains and the head group. Obtaining such component volumes from experiment and from simulations is re-examined, first by distinguishing methods based on apparent versus partial molar volumes. Although somewhat different, both these methods give results that are counterintuitive and that differ from results obtained by a more local method that can only be applied to simulations. These comparisons reveal differences in the average methylene component volume that result in larger differences in the head group component volumes. Literature experimental volume data for unsaturated phosphocholines and for alkanes have been used and new data have been acquired for saturated phosphocholines. Data and simulations cover extended ranges of temperature to assess both the temperature and chain length dependence of the component volumes. A new method to refine the determination of component volumes is proposed that uses experimental data for different chain lengths at temperatures guided by the temperature dependence determined in simulations. These refinements enable more precise comparisons of the component volumes of different lipids and alkanes in different phases. Finally, the notion of free volume is extended to components using the Lennard-Jones radii to estimate the excluded volume of each component. This analysis reveals that head group free volumes are relatively independent of thermodynamic phase, whereas both the methylene and methyl free volumes increase dramatically when bilayers transition from gel to fluid.


Assuntos
Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Confiabilidade dos Dados , Simulação de Dinâmica Molecular , Estrutura Molecular , Temperatura
19.
Nat Commun ; 10(1): 5616, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819053

RESUMO

The functional significance of ordered nanodomains (or rafts) in cholesterol rich eukaryotic cell membranes has only begun to be explored. This study exploits the correspondence of cellular rafts and liquid ordered (Lo) phases of three-component lipid bilayers to examine permeability. Molecular dynamics simulations of Lo phase dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and cholesterol show that oxygen and water transit a leaflet through the DOPC and cholesterol rich boundaries of hexagonally packed DPPC microdomains, freely diffuse along the bilayer midplane, and escape the membrane along the boundary regions. Electron paramagnetic resonance experiments provide critical validation: the measured ratio of oxygen concentrations near the midplanes of liquid disordered (Ld) and Lo bilayers of DPPC/DOPC/cholesterol is 1.75 ± 0.35, in very good agreement with 1.3 ± 0.3 obtained from simulation. The results show how cellular rafts can be structurally rigid signaling platforms while remaining nearly as permeable to small molecules as the Ld phase.


Assuntos
Permeabilidade da Membrana Celular , 1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Simulação por Computador , Difusão , Bicamadas Lipídicas/metabolismo , Oxigênio/química , Fosfatidilcolinas/química , Probabilidade , Termodinâmica
20.
J Chem Theory Comput ; 15(6): 3854-3867, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31002505

RESUMO

Atomistic biomolecular simulations predominantly utilize additive force fields (FF), where the electrostatic potential is modeled by fixed point charges. Among other consequences, the lack of polarizability in these models undermines the balance of hydrophilic/hydrophobic nonbonded interactions. Simulations of water/alkane systems using the TIP3P water model and CHARMM36 parameters reveal a 1 kcal/mol overestimate of the experimental transfer free energy of water to hexadecane; more recent optimized water models (SPC/E, TIP4P/2005, TIP4P-Ew, TIP3P-FB, TIP4P-FB, OPC, TIP4P-D) overestimate this transfer free energy by approximately 2 kcal/mol. In contrast, the polarizable SWM4-NDP and SWM6 water models reproduce experimental values to within statistical error. As an alternative to explicitly modeling polarizability, this paper develops an efficient automated workflow to optimize pair-specific Lennard-Jones parameters within an additive FF. Water/hexadecane is used as a prototype and the free energy of water transfer to hexadecane as a target. The optimized model yields quantitative agreement with the experimental transfer free energy and improves the water/hexadecane interfacial tension by 6%. Simulations of five different lipid bilayers show a strong increase of water permeabilities compared to the unmodified CHARMM36 lipid FF which consistently improves match with experiment: the order-of-magnitude underestimate for monounsaturated bilayers is rectified and the factor of 2.8-4 underestimate for saturated bilayers is turned into a factor of 1.5-3 overestimate. While agreement with experiment is decreased for the diffusion constant of water in hexadecane, alkane transfer free energies, and the bilayers' area per lipid, the method provides a permeant-specific route to achieve a wide range of heterogeneous observables via rapidly optimized pairwise parameters.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa