Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Genet Couns ; 31(4): 901-911, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35147246

RESUMO

Cancer predisposition syndromes (CPS) are underdiagnosed in the pediatric population, though the diagnosis of a CPS has important implications for the child and their family. CPS are often diagnosed by geneticists or oncologists with expertise in CPS following a malignancy. This requires a member of the care team, most commonly, the treating oncologist to suspect a CPS and refer the patient for CPS assessment. An online survey was distributed to members of the Children's Oncology Group to elucidate current referral practices and barriers to referral for patients suspected to have a CPS. Of the 183 respondents, 86.1% was pediatric oncologists and most (68.5%) used formal guidelines to aid in assessment. Most respondents indicated they would rarely refer patients with tumors highly associated with CPS for genetic assessment. Participants were more likely to refer patients with malignancy and additional features of a CPS than for a specific type of cancer, despite the use of guidelines. Parent knowledge of family history was considered the most challenging barrier to obtaining a family history, though a thorough pedigree was not consistently elicited. Providers indicated the most significant barrier to referral for CPS assessment was priority given the patient's immediate care needs. Identification of these barriers provides direction to focus efforts to increase referrals. Provider education about CPS, clear referral guidelines, and implementation of or increased collaboration with a genetic counselor in the pediatric oncology clinic may encourage CPS assessment and enable oncologists to focus on the patient's immediate care needs.


Assuntos
Neoplasias , Encaminhamento e Consulta , Criança , Humanos , Anamnese , Oncologia , Neoplasias/diagnóstico , Neoplasias/genética , Inquéritos e Questionários , Estados Unidos
2.
Hum Mol Genet ; 26(4): 661-673, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28007910

RESUMO

GM2 gangliosidoses are a group of lysosomal storage disorders which include Sandhoff disease and Tay-Sachs disease. Dysregulation of glutamate receptors has been recently postulated in the pathology of Sandhoff disease. Glutamate receptor association with neuronal pentraxins 1 and 2, and the neuronal pentraxin receptor facilitates receptor potentiation and synaptic shaping. In this study, we have observed an upregulation of a novel form of neuronal pentraxin 1 (NP1-38) in the brains of a mouse model of Sandhoff disease and Tay-Sachs disease. In order to determine the impact of NP1 on the pathophysiology of Sandhoff disease mouse models, we have generated an Np1-/-Hexb-/- double knockout mouse, and observed extended lifespan, improved righting reflex and enhanced body condition relative to Hexb-/- mice, with no effect on gliosis or apoptotic markers in the CNS. Sandhoff mouse brain slices reveals a reduction in AMPA receptor-mediated currents, and increased variability in total glutamate currents in the CA1 region of the hippocampus; Np1-/-Hexb-/- mice show a correction of this phenotype, suggesting NP1-38 may be interfering with glutamate receptor function. Indeed, some of the psychiatric aspects of Sandhoff and Tay-Sachs disease (particularly late onset) may be attributed to a dysfunctional hippocampal glutamatergic system. Our work highlights a potential role for synaptic proteins, such as NP1 and glutamate receptors in lysosomal storage diseases.


Assuntos
Proteína C-Reativa/biossíntese , Região CA1 Hipocampal/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Doença de Sandhoff/metabolismo , Regulação para Cima , Cadeia beta da beta-Hexosaminidase/biossíntese , Animais , Proteína C-Reativa/genética , Região CA1 Hipocampal/patologia , Humanos , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Doença de Sandhoff/patologia , Cadeia beta da beta-Hexosaminidase/genética
3.
J Transl Med ; 14: 67, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26952093

RESUMO

BACKGROUND: Leiomyosarcoma (LMS) is a common type of soft tissue sarcoma that responds poorly to standard chemotherapy. Thus the goal of this study was to identify novel selective therapies that may be effective in leiomyosarcoma by screening cell lines with a small molecule library comprised of 480 kinase inhibitors to functionally determine which signalling pathways may be critical for LMS growth. METHODS: LMS cell lines were screened with the OICR kinase library and a cell viability assay was used to identify potentially effective compounds. The top 10 % of hits underwent secondary validation to determine their EC50 and immunoblots were performed to confirm selective drug action. The efficacy of combination drug therapy with doxorubicin (Dox) in vitro was analyzed using the Calcusyn program after treatment with one of three dosing schedules: concurrent treatment, initial treatment with a selective compound followed by Dox, or initial treatment with Dox followed by the selective compound. Single and combination drug therapy were then validated in vivo using LMS xenografts. RESULTS: Compounds that targeted PI3K/AKT/mTOR pathways (52 %) were most effective. EC50s were determined to validate these initial hits, and of the 11 confirmed hits, 10 targeted PI3K and/or mTOR pathways with EC50 values <1 µM. We therefore examined if BEZ235 and BKM120, two selective compounds in these pathways, would inhibit leiomyosarcoma growth in vitro. Immunoblots confirmed on-target effects of these compounds in the PI3K and/or mTOR pathways. We next investigated if there was synergy with these agents and first line chemotherapy doxorubicin (Dox), which would allow for earlier introduction into patient care. Only combined treatment of BEZ235 and Dox was synergistic in vitro. To validate these findings in pre-clinical models, leiomyosarcoma xenografts were treated with single agent and combination therapy. BEZ235 treated xenografts (n = 8) demonstrated a decrease in tumor volume of 42 % whereas combining BEZ235 with Dox (n = 8) decreased tumor volume 68 % compared to vehicle alone. CONCLUSIONS: In summary, this study supports further investigation into the use of PI3K and mTOR inhibitors alone and in combination with standard treatment in leiomyosarcoma patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Doxorrubicina/uso terapêutico , Leiomiossarcoma/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Feminino , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Leiomiossarcoma/patologia , Camundongos Endogâmicos NOD , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Reprodutibilidade dos Testes , Serina-Treonina Quinases TOR/metabolismo
5.
J Med Genet ; 49(9): 591-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22892202

RESUMO

A viable treatment for lysosomal storage disease has been very difficult to attain. One option is pharmacological inhibition of synthetic pathways to reduce substrate accumulations. Miglustat N-butyldeoxynojirimycin (NBDNJ), an inhibitor of glucosylceramide synthase, has shown much promise in clinical trials for the treatment of Type I Gaucher disease. The molecular events invoked by NBDNJ in cell culture and in animal models have not been so definitive. This review discusses the biochemical and molecular impact of NBDNJ as it relates to its potential as a therapeutic drug.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Gaucher/tratamento farmacológico , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Gangliosídeos/biossíntese , Gangliosídeos/química , Humanos
6.
Nat Cancer ; 4(2): 203-221, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36585449

RESUMO

We conducted integrative somatic-germline analyses by deeply sequencing 864 cancer-associated genes, complete genomes and transcriptomes for 300 mostly previously treated children and adolescents/young adults with cancer of poor prognosis or with rare tumors enrolled in the SickKids Cancer Sequencing (KiCS) program. Clinically actionable variants were identified in 56% of patients. Improved diagnostic accuracy led to modified management in a subset. Therapeutically targetable variants (54% of patients) were of unanticipated timing and type, with over 20% derived from the germline. Corroborating mutational signatures (SBS3/BRCAness) in patients with germline homologous recombination defects demonstrates the potential utility of PARP inhibitors. Mutational burden was significantly elevated in 9% of patients. Sequential sampling identified changes in therapeutically targetable drivers in over one-third of patients, suggesting benefit from rebiopsy for genomic analysis at the time of relapse. Comprehensive cancer genomic profiling is useful at multiple points in the care trajectory for children and adolescents/young adults with cancer, supporting its integration into early clinical management.


Assuntos
Neoplasias , Adulto Jovem , Adolescente , Humanos , Criança , Neoplasias/tratamento farmacológico , Neoplasias/genética , Mutação , Genômica , Transcriptoma/genética , Recombinação Homóloga
7.
Cancer Res Commun ; 2(4): 220-232, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-36187937

RESUMO

Ewing sarcoma is a fusion oncoprotein-driven primary bone tumor. A subset of patients (~10%) with Ewing sarcoma are known to harbor germline variants in a growing number of genes involved in DNA damage repair. We recently reported our discovery of a germline mutation in the DNA damage repair protein BARD1 (BRCA1-associated RING domain-1) in a patient with Ewing sarcoma. BARD1 is recruited to the site of DNA double stranded breaks via the poly(ADP-ribose) polymerase (PARP) protein and plays a critical role in DNA damage response pathways including homologous recombination. We thus questioned the impact of BARD1 loss on Ewing cell sensitivity to DNA damage and the Ewing sarcoma transcriptome. We demonstrate that PSaRC318 cells, a novel patient-derived cell line harboring a pathogenic BARD1 variant, are sensitive to PARP inhibition and by testing the effect of BARD1 depletion in additional Ewing sarcoma cell lines, we confirm that BARD1 loss enhances cell sensitivity to PARP inhibition plus radiation. Additionally, RNA-seq analysis revealed that loss of BARD1 results in the upregulation of GBP1 (guanylate-binding protein 1), a protein whose expression is associated with variable response to therapy depending on the adult carcinoma subtype examined. Here, we demonstrate that GBP1 contributes to the enhanced sensitivity of BARD1 deficient Ewing cells to DNA damage. Together, our findings demonstrate the impact of loss-of function mutations in DNA damage repair genes, such as BARD1, on Ewing sarcoma treatment response.


Assuntos
Neoplasias Ósseas , Tumores Neuroectodérmicos Primitivos Periféricos , Sarcoma de Ewing , Humanos , Sarcoma de Ewing/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Dano ao DNA/genética , Reparo do DNA/genética , Neoplasias Ósseas/genética , Poli(ADP-Ribose) Polimerases/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Ligação ao GTP/genética , Proteína BRCA1/genética
8.
Nat Commun ; 12(1): 4496, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301934

RESUMO

Leiomyosarcomas (LMS) are genetically heterogeneous tumors differentiating along smooth muscle lines. Currently, LMS treatment is not informed by molecular subtyping and is associated with highly variable survival. While disease site continues to dictate clinical management, the contribution of genetic factors to LMS subtype, origins, and timing are unknown. Here we analyze 70 genomes and 130 transcriptomes of LMS, including multiple tumor regions and paired metastases. Molecular profiling highlight the very early origins of LMS. We uncover three specific subtypes of LMS that likely develop from distinct lineages of smooth muscle cells. Of these, dedifferentiated LMS with high immune infiltration and tumors primarily of gynecological origin harbor genomic dystrophin deletions and/or loss of dystrophin expression, acquire the highest burden of genomic mutation, and are associated with worse survival. Homologous recombination defects lead to genome-wide mutational signatures, and a corresponding sensitivity to PARP trappers and other DNA damage response inhibitors, suggesting a promising therapeutic strategy for LMS. Finally, by phylogenetic reconstruction, we present evidence that clones seeding lethal metastases arise decades prior to LMS diagnosis.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença/genética , Genômica/métodos , Leiomiossarcoma/genética , Músculo Liso/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Evolução Clonal , Estudos de Coortes , Feminino , Humanos , Leiomiossarcoma/classificação , Leiomiossarcoma/diagnóstico , Masculino , Pessoa de Meia-Idade , Músculo Liso/patologia , Mutação , RNA-Seq/métodos , Análise de Sobrevida
9.
Oncogene ; 37(20): 2630-2644, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29487419

RESUMO

Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and outcomes have stagnated, highlighting a need for novel therapies. Genomic analysis of RMS has revealed that alterations in the receptor tyrosine kinase (RTK)/RAS/PI3K axis are common and that FGFR4 is frequently mutated or overexpressed. Although FGFR4 is a potentially druggable receptor tyrosine kinase, its functions in RMS are undefined. This study tested FGFR4-activating mutations and overexpression for the ability to generate RMS in mice. Murine tumor models were subsequently used to discover potential therapeutic targets and to test a dual PI3K/mTOR inhibitor in a preclinical setting. Specifically, we provide the first mechanistic evidence of differential potency in the most common human RMS mutations, V550E or N535K, compared to FGFR4wt overexpression as murine myoblasts expressing FGFR4V550E undergo higher rates of cellular transformation, engraftment into mice, and rapidly form sarcomas that highly resemble human RMS. Murine tumor cells overexpressing FGFR4V550E were tested in an in vitro dose-response drug screen along with human RMS cell lines. Compounds were grouped by target class, and potency was determined using average percentage of area under the dose-response curve (AUC). RMS cells were highly sensitive to PI3K/mTOR inhibitors, in particular, GSK2126458 (omipalisib) was a potent inhibitor of FGFR4V550E tumor-derived cell and human RMS cell viability. FGFR4V550E-overexpressing myoblasts and tumor cells had low nanomolar GSK2126458 EC50 values. Mass cytometry using mouse and human RMS cell lines validated GSK2126458 specificity at single-cell resolution, decreasing the abundance of phosphorylated Akt as well as decreasing phosphorylation of the downstream mTOR effectors 4ebp1, Eif4e, and S6. Moreover, PI3K/mTOR inhibition also robustly decreased the growth of RMS tumors in vivo. Thus, by developing a preclinical platform for testing novel therapies, we identified PI3K/mTOR inhibition as a promising new therapy for this devastating pediatric cancer.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Quinolinas/administração & dosagem , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Rabdomiossarcoma/tratamento farmacológico , Sulfonamidas/administração & dosagem , Animais , Área Sob a Curva , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Mutação , Transplante de Neoplasias , Fosforilação/efeitos dos fármacos , Piridazinas , Quinolinas/farmacologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Oncotarget ; 6(16): 14220-32, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25992772

RESUMO

While genomic studies have improved our ability to classify sarcomas, the molecular mechanisms involved in the formation and progression of many sarcoma subtypes are unknown. To better understand developmental origins and genetic drivers involved in rhabdomyosarcomagenesis, we describe a novel sarcoma model system employing primary murine p53-deficient myoblasts that were isolated and lentivirally transduced with KrasG12D. Myoblast cell lines were characterized and subjected to proliferation, anchorage-independent growth and differentiation assays to assess the effects of transgenic KrasG12D expression. KrasG12D overexpression transformed p53-/- myoblasts as demonstrated by an increased anchorage-independent growth. Induction of differentiation in parental myoblasts resulted in activation of key myogenic regulators. In contrast, Kras-transduced myoblasts had impaired terminal differentiation. p53-/- myoblasts transformed by KrasG12D overexpression resulted in rapid, reproducible tumor formation following orthotopic injection into syngeneic host hindlimbs. Pathological analysis revealed high-grade sarcomas with myogenic differentiation based on the expression of muscle-specific markers, such as Myod1 and Myog. Gene expression patterns of murine sarcomas shared biological pathways with RMS gene sets as determined by gene set enrichment analysis (GSEA) and were 61% similar to human RMS as determined by metagene analysis. Thus, our novel model system is an effective means to model high-grade sarcomas along the RMS spectrum.


Assuntos
Mioblastos/metabolismo , Mioblastos/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sarcoma/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos/enzimologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Sarcoma/genética , Sarcoma/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa