Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 17(1): 361, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27612449

RESUMO

BACKGROUND: The decreasing costs of sequencing are driving the need for cost effective and real time variant calling of whole genome sequencing data. The scale of these projects are far beyond the capacity of typical computing resources available with most research labs. Other infrastructures like the cloud AWS environment and supercomputers also have limitations due to which large scale joint variant calling becomes infeasible, and infrastructure specific variant calling strategies either fail to scale up to large datasets or abandon joint calling strategies. RESULTS: We present a high throughput framework including multiple variant callers for single nucleotide variant (SNV) calling, which leverages hybrid computing infrastructure consisting of cloud AWS, supercomputers and local high performance computing infrastructures. We present a novel binning approach for large scale joint variant calling and imputation which can scale up to over 10,000 samples while producing SNV callsets with high sensitivity and specificity. As a proof of principle, we present results of analysis on Cohorts for Heart And Aging Research in Genomic Epidemiology (CHARGE) WGS freeze 3 dataset in which joint calling, imputation and phasing of over 5300 whole genome samples was produced in under 6 weeks using four state-of-the-art callers. The callers used were SNPTools, GATK-HaplotypeCaller, GATK-UnifiedGenotyper and GotCloud. We used Amazon AWS, a 4000-core in-house cluster at Baylor College of Medicine, IBM power PC Blue BioU at Rice and Rhea at Oak Ridge National Laboratory (ORNL) for the computation. AWS was used for joint calling of 180 TB of BAM files, and ORNL and Rice supercomputers were used for the imputation and phasing step. All other steps were carried out on the local compute cluster. The entire operation used 5.2 million core hours and only transferred a total of 6 TB of data across the platforms. CONCLUSIONS: Even with increasing sizes of whole genome datasets, ensemble joint calling of SNVs for low coverage data can be accomplished in a scalable, cost effective and fast manner by using heterogeneous computing platforms without compromising on the quality of variants.


Assuntos
Genoma Humano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Bases de Dados Genéticas , Humanos
2.
PLoS One ; 15(8): e0236285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32841250

RESUMO

Characterizing meiotic recombination rates across the genomes of nonhuman primates is important for understanding the genetics of primate populations, performing genetic analyses of phenotypic variation and reconstructing the evolution of human recombination. Rhesus macaques (Macaca mulatta) are the most widely used nonhuman primates in biomedical research. We constructed a high-resolution genetic map of the rhesus genome based on whole genome sequence data from Indian-origin rhesus macaques. The genetic markers used were approximately 18 million SNPs, with marker density 6.93 per kb across the autosomes. We report that the genome-wide recombination rate in rhesus macaques is significantly lower than rates observed in apes or humans, while the distribution of recombination across the macaque genome is more uniform. These observations provide new comparative information regarding the evolution of recombination in primates.


Assuntos
Evolução Molecular , Macaca mulatta/genética , Meiose/genética , Recombinação Genética , Animais , Mapeamento Cromossômico , Marcadores Genéticos , Variação Genética , Genoma , Humanos , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa