Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(9): e1011647, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37738244

RESUMO

The bacterial microbiota promotes the life cycle of the intestine-dwelling whipworm Trichuris by mediating hatching of parasite eggs ingested by the mammalian host. Despite the enormous disease burden associated with Trichuris colonization, the mechanisms underlying this transkingdom interaction have been obscure. Here, we used a multiscale microscopy approach to define the structural events associated with bacteria-mediated hatching of eggs for the murine model parasite Trichuris muris. Through the combination of scanning electron microscopy (SEM) and serial block face SEM (SBFSEM), we visualized the outer surface morphology of the shell and generated 3D structures of the egg and larva during the hatching process. These images revealed that exposure to hatching-inducing bacteria catalyzed asymmetric degradation of the polar plugs prior to exit by the larva. Unrelated bacteria induced similar loss of electron density and dissolution of the structural integrity of the plugs. Egg hatching was most efficient when high densities of bacteria were bound to the poles. Consistent with the ability of taxonomically distant bacteria to induce hatching, additional results suggest chitinase released from larva within the eggs degrade the plugs from the inside instead of enzymes produced by bacteria in the external environment. These findings define at ultrastructure resolution the evolutionary adaptation of a parasite for the microbe-rich environment of the mammalian gut.


Assuntos
Microbiota , Trichuris , Camundongos , Animais , Microscopia Eletrônica de Varredura , Bactérias , Larva , Óvulo , Mamíferos
3.
Mol Phylogenet Evol ; 105: 50-62, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27480810

RESUMO

Snakes of the cosmopolitan family Viperidae comprise around 329 venomous species showing a striking heterogeneity in species richness among lineages. While the subfamily Azemiopinae comprises only two species, 70% of all viper species are arranged in the subfamily Crotalinae or the "pit vipers". The radiation of the pit vipers was marked by the evolution of the heat-sensing pits, which has been suggested to be a key innovation for the successful diversification of the group. Additionally, only crotalines were able to successfully colonize the New World. Here, we present the most complete molecular phylogeny for the family to date that comprises sequences from nuclear and mitochondrial genes representing 79% of all living vipers. We also investigated the time of divergence between lineages, using six fossils to calibrate the tree, and explored the hypothesis that crotalines have undergone an explosive radiation. Our phylogenetic analyses retrieved high support values for the monophyly of the family Viperidae, subfamilies Viperinae and Crotalinae, and 22 out of 27 genera, as well as well-supported intergeneric relationships throughout the family. We were able to recover a strongly supported sister clade to the New World pit vipers that comprises Gloydius, Ovophis, Protobothrops and Trimeresurus gracilis. Our results agree in many aspects with other studies focusing on the phylogenetics of vipers, but we recover new relationships as well. Despite the addition of new sequences we were not able to resolve some of the poor supported relationships previously suggested. Time of divergence estimates suggested that vipers started to radiate around the late Paleocene to middle Eocene with subfamilies most likely dating back to the Eocene. The invasion of the New World might have taken place sometime close to the Oligocene/Miocene boundary. Diversification analyses suggested a shift in speciation rates during the radiation of a sub-clade of pit vipers where speciation rates rapidly increased but slowed down toward the present. Thus, the evolution of the loreal pits alone does not seem to explain their explosive speciation rates. We suggest that climatic and geological changes in Asia and the invasion of the New World may have also contributed to the speciation shift found in vipers.


Assuntos
Especiação Genética , Variação Genética , Filogenia , Viperidae/classificação , Animais , Ásia , Calibragem , Extinção Biológica , Fósseis , Especificidade da Espécie , Fatores de Tempo
4.
bioRxiv ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993552

RESUMO

The bacterial microbiota promotes the life cycle of the intestine-dwelling whipworm Trichuris by mediating hatching of parasite eggs ingested by the mammalian host. Despite the enormous disease burden associated with Trichuris colonization, the mechanisms underlying this transkingdom interaction have been obscure. Here, we used a multiscale microscopy approach to define the structural events associated with bacteria-mediated hatching of eggs for the murine model parasite Trichuris muris . Through the combination of scanning electron microscopy (SEM) and serial block face SEM (SBFSEM), we visualized the outer surface morphology of the shell and generated 3D structures of the egg and larva during the hatching process. These images revealed that exposure to hatching-inducing bacteria catalyzed asymmetric degradation of the polar plugs prior to exit by the larva. Although unrelated bacteria induced similar loss of electron density and dissolution of the structural integrity of the plugs, egg hatching was most efficient in the presence of bacteria that bound poles with high density such as Staphylococcus aureus . Consistent with the ability of taxonomically distant bacteria to induce hatching, additional results suggest chitinase released from larva within the eggs degrade the plugs from the inside instead of enzymes produced by bacteria in the external environment. These findings define at ultrastructure resolution the evolutionary adaptation of a parasite for the microbe-rich environment of the mammalian gut.

5.
Cell Host Microbe ; 30(6): 786-797.e8, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35413267

RESUMO

Trichuris nematodes reproduce within the microbiota-rich mammalian intestine and lay thousands of eggs daily, facilitating their sustained presence in the environment and hampering eradication efforts. Here, we show that bacterial byproducts facilitate the reproductive development of nematodes. First, we employed a pipeline using the well-characterized, free-living nematode C. elegans to identify microbial factors with conserved roles in nematode reproduction. A screen for E. coli mutants that impair C. elegans fertility identified genes in fatty acid biosynthesis and ethanolamine utilization pathways, including fabH and eutN. Additionally, Trichuris muris eggs displayed defective hatching in the presence of fabH- or eutN-deficient E. coli due to reduced arginine or elevated aldehydes, respectively. T. muris reared in gnotobiotic mice colonized with these E. coli mutants displayed morphological defects and failed to lay viable eggs. These findings indicate that microbial byproducts mediate evolutionarily conserved transkingdom interactions that impact the reproductive fitness of distantly related nematodes.


Assuntos
Escherichia coli , Nematoides , Animais , Caenorhabditis elegans/microbiologia , Aptidão Genética , Mamíferos , Camundongos , Trichuris/microbiologia
6.
bioRxiv ; 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35262080

RESUMO

The microbial populations in the gut microbiome have recently been associated with COVID-19 disease severity. However, a causal impact of the gut microbiome on COVID-19 patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. Antibiotics and other treatments during COVID-19 can potentially confound microbiome associations. We therefore first demonstrate in a mouse model that SARS-CoV-2 infection can induce gut microbiome dysbiosis, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Comparison with stool samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, paralleling our observations in the animal model. Specifically, we observed blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species in hospitalized COVID-19 patients. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data obtained from these patients indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.

7.
Nat Commun ; 13(1): 5926, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319618

RESUMO

Although microbial populations in the gut microbiome are associated with COVID-19 severity, a causal impact on patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. We first demonstrate SARS-CoV-2 infection induces gut microbiome dysbiosis in mice, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, including blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.


Assuntos
Bacteriemia , COVID-19 , Coinfecção , Microbioma Gastrointestinal , Camundongos , Animais , Disbiose/microbiologia , Antibacterianos , SARS-CoV-2 , Bactérias
8.
Res Sq ; 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34341786

RESUMO

The microbial populations in the gut microbiome have recently been associated with COVID-19 disease severity. However, a causal impact of the gut microbiome on COVID-19 patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. Antibiotics and other treatments during COVID-19 can potentially confound microbiome associations. We therefore first demonstrate that the gut microbiome is directly affected by SARS-CoV-2 infection in a dose-dependent manner in a mouse model, causally linking viral infection and gut microbiome dysbiosis. Comparison with stool samples collected from 97 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, paralleling our observations in the animal model. Specifically, we observed blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species in hospitalized COVID-19 patients. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data obtained from these patients suggest that bacteria translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID 19.

9.
Nat Microbiol ; 4(10): 1737-1749, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182797

RESUMO

Products derived from bacterial members of the gut microbiota evoke immune signalling pathways of the host that promote immunity and barrier function in the intestine. How immune reactions to enteric viruses support intestinal homeostasis is unknown. We recently demonstrated that infection by murine norovirus (MNV) reverses intestinal abnormalities following depletion of bacteria, indicating that an intestinal animal virus can provide cues to the host that are typically attributed to the microbiota. Here, we elucidate mechanisms by which MNV evokes protective responses from the host. We identify an important role for the viral protein NS1/2 in establishing local replication and a type I interferon (IFN-I) response in the colon. We further show that IFN-I acts on intestinal epithelial cells to increase the proportion of CCR2-dependent macrophages and interleukin (IL)-22-producing innate lymphoid cells, which in turn promote pSTAT3 signalling in intestinal epithelial cells and protection from intestinal injury. In addition, we demonstrate that MNV provides a striking IL-22-dependent protection against early-life lethal infection by Citrobacter rodentium. These findings demonstrate novel ways in which a viral member of the microbiota fortifies the intestinal barrier during chemical injury and infectious challenges.


Assuntos
Microbioma Gastrointestinal/imunologia , Interferon Tipo I/metabolismo , Interleucinas/metabolismo , Intestinos/imunologia , Intestinos/virologia , Animais , Antibacterianos/toxicidade , Proliferação de Células , Citrobacter rodentium/fisiologia , Colo/citologia , Colo/imunologia , Colo/metabolismo , Colo/virologia , Sulfato de Dextrana/toxicidade , Infecções por Enterobacteriaceae/prevenção & controle , Interleucinas/genética , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Intestinos/citologia , Intestinos/efeitos dos fármacos , Linfócitos/citologia , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Norovirus/imunologia , Norovirus/fisiologia , Transdução de Sinais/genética , Organismos Livres de Patógenos Específicos , Proteínas não Estruturais Virais/genética , Replicação Viral , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa