Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Liq ; 340: 117284, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34421159

RESUMO

The COVID-19 pandemic has accelerated the study of the potential of multi-target drugs (MTDs). The mixture of homologues called ivermectin (avermectin-B1a + avermectin-B1b) has been shown to be a MTD with potential antiviral activity against SARS-CoV-2 in vitro. However, there are few reports on the effect of each homologue on the flexibility and stiffness of proteins associated with COVID-19, described as ivermectin targets. We observed that each homologue was stably bound to the proteins studied and was able to induce detectable changes with Elastic Network Models (ENM). The perturbations induced by each homologue were characteristic of each compound and, in turn, were represented by a disruption of native intramolecular networks (interactions between residues). The homologues were able to slightly modify the conformation and stability of the connection points between the Cα atoms of the residues that make up the structural network of proteins (nodes), compared to free proteins. Each homologue was able to modified differently the distribution of quasi-rigid regions of the proteins, which could theoretically alter their biological activities. These results could provide a biophysical-computational view of the potential MTD mechanism that has been reported for ivermectin.

2.
ACS Omega ; 9(8): 8923-8939, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434903

RESUMO

Recent reports have suggested that the susceptibility of cells to SARS-CoV-2 infection can be influenced by various proteins that potentially act as receptors for the virus. To investigate this further, we conducted simulations of viral dynamics using different cellular systems (Vero E6, HeLa, HEK293, and CaLu3) in the presence and absence of drugs (anthelmintic, ARBs, anticoagulant, serine protease inhibitor, antimalarials, and NSAID) that have been shown to impact cellular recognition by the spike protein based on experimental data. Our simulations revealed that the susceptibility of the simulated cell systems to SARS-CoV-2 infection was similar across all tested systems. Notably, CaLu3 cells exhibited the highest susceptibility to SARS-CoV-2 infection, potentially due to the presence of receptors other than ACE2, which may account for a significant portion of the observed susceptibility. Throughout the study, all tested compounds showed thermodynamically favorable and stable binding to the spike protein. Among the tested compounds, the anticoagulant nafamostat demonstrated the most favorable characteristics in terms of thermodynamics, kinetics, theoretical antiviral activity, and potential safety (toxicity) in relation to SARS-CoV-2 spike protein-mediated infections in the tested cell lines. This study provides mathematical and bioinformatic models that can aid in the identification of optimal cell lines for compound evaluation and detection, particularly in studies focused on repurposed drugs and their mechanisms of action. It is important to note that these observations should be experimentally validated, and this research is expected to inspire future quantitative experiments.

3.
Int J Biol Macromol ; 244: 125113, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37257544

RESUMO

The coupling of Cas9 and its inhibitor AcrIIC3, both from the bacterium Neisseria meningitidis (Nme), form a homodimer of the (NmeCas9/AcrIIC3)2 type. This coupling was studied to assess the impact of their interaction with the crowders in the following environments: (1) homogeneous crowded, (2) heterogeneous, and (3) microheterogeneous cytoplasmic. For this, statistical thermodynamic models based on the scaled particle theory (SPT) were used, considering the attractive and repulsive protein-crowders contributions and the stability of the formation of spherocylindrical homodimers and the effects of changes in the size of spherical dimers were estimated. Studies based on models of dynamics, elastic networks, and statistical potentials to the formation of complexes NmeCas9/AcrIIC3 using PEG as the crowding agent support the predictions from SPT. Macromolecular crowding stabilizes the formation of the dimers, being more significant when the attractive protein-crowder interactions are weaker and the crowders are smaller. The coupling is favored towards the formation of spherical and compact dimers due to crowding addition (excluded-volume effects) and the thermodynamic stability of the dimers is markedly dependent on the size of the crowders. These results support the experimental mechanistic proposal of inhibition of NmeCas9 mediated by AcrIIC3.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Substâncias Macromoleculares , Polímeros , Termodinâmica
4.
Comput Biol Chem ; 99: 107692, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35640480

RESUMO

The COVID-19 pandemic has accelerated the study of drugs, most notably ivermectin and more recently Paxlovid (PF-07321332) which is in phase III clinical trials with experimental data showing covalent binding to the viral protease Mpro. Theoretical developments of catalytic site-directed docking support thermodynamically feasible non-covalent binding to Mpro. Here we show that Paxlovid binds non-covalently at regions other than the catalytic sites with energies stronger than reported and at the same binding site as the ivermectin B1a homologue, all through theoretical methodologies, including blind docking. We volumetrically characterize the non-covalent interaction of the ivermectin homologues (avermectins B1a and B1b) and Paxlovid with the mMpro monomer, through molecular dynamics and scaled particle theory (SPT). Using the fluctuation-dissipation theorem (FDT), we estimated the electric dipole moment fluctuations at the surface of each of complex involved in this study, with similar trends to that observed in the interaction volume. Using fluctuations of the intrinsic volume and the number of flexible fragments of proteins using anisotropic and Gaussian elastic networks (ANM+GNM) suggests the complexes with ivermectin are more dynamic and flexible than the unbound monomer. In contrast, the binding of Paxlovid to mMpro shows that the mMpro-PF complex is the least structurally dynamic of all the species measured in this investigation. The results support a differential molecular mechanism of the ivermectin and PF homologues in the mMpro monomer. Finally, the results showed that Paxlovid despite beingbound in different sites through covalent or non-covalent forms behaves similarly in terms of its structural flexibility and volumetric behaviour.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/química , Combinação de Medicamentos , Humanos , Ivermectina , Lactamas , Leucina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nitrilas , Pandemias , Peptídeo Hidrolases/metabolismo , Prolina , Inibidores de Proteases/química , Ritonavir , Termodinâmica
5.
Comput Biol Med ; 142: 105245, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077937

RESUMO

Cellular susceptibility to SARS-CoV-2 infection in the respiratory tract has been associated with the ability of the virus to interact with potential receptors on the host membrane. We have modeled viral dynamics by simulating various cellular systems and artificial conditions, including macromolecular crowding, based on experimental and transcriptomic data to infer parameters associated with viral growth and predict cell susceptibility. We have accomplished this based on the type, number and level of expression of the angiotensin-converting enzyme 2 (ACE2), transmembrane serine 2 (TMPRSS2), basigin2 (CD147), FURIN protease, neuropilin 1 (NRP1) or other less studied candidate receptors such as heat shock protein A5 (HSPA5) and angiotensin II receptor type 2 (AGTR2). In parallel, we studied the effect of simulated artificial environments on the accessibility to said proposed receptors. In addition, viral kinetic behavior dependent on the degree of cellular susceptibility was predicted. The latter was observed to be more influenced by the type of proteins and expression level, than by the number of potential proteins associated with the SARS CoV-2 infection. We predict a greater theoretical propensity to susceptibility in cell lines such as NTERA-2, SCLC-21H, HepG2 and Vero6, and a lower theoretical propensity in lines such as CaLu3, RT4, HEK293, A549 and U-251MG. An important relationship was observed between expression levels, protein diffusivity, and thermodynamically favorable interactions between host proteins and the viral spike, suggesting potential sites of early infection other than the lungs. This research is expected to stimulate future quantitative experiments and promote systematic investigation of the effect of crowding presented here.


Assuntos
COVID-19 , Células HEK293 , Humanos , SARS-CoV-2 , Internalização do Vírus
6.
Biophys Chem ; 278: 106677, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34428682

RESUMO

The SARS-CoV-2 pandemic has accelerated the study of existing drugs. The mixture of homologs called ivermectin (avermectin-B1a [HB1a] + avermectin-B1b [HB1b]) has shown antiviral activity against SARS-CoV-2 in vitro. However, there are few reports on the behavior of each homolog. We investigated the interaction of each homolog with promising targets of interest associated with SARS-CoV-2 infection from a biophysical and computational-chemistry perspective using docking and molecular dynamics. We observed a differential behavior for each homolog, with an affinity of HB1b for viral structures, and of HB1a for host structures considered. The induced disturbances were differential and influenced by the hydrophobicity of each homolog and of the binding pockets. We present the first comparative analysis of the potential theoretical inhibitory effect of both avermectins on biomolecules associated with COVID-19, and suggest that ivermectin through its homologs, has a multiobjective behavior.


Assuntos
Antivirais/química , Proteases 3C de Coronavírus/antagonistas & inibidores , DNA Helicases/antagonistas & inibidores , Ivermectina/análogos & derivados , alfa Carioferinas/antagonistas & inibidores , beta Carioferinas/antagonistas & inibidores , Animais , Antivirais/farmacologia , Sítios de Ligação , COVID-19/virologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Humanos , Ivermectina/química , Ivermectina/farmacologia , Cinética , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Termodinâmica , alfa Carioferinas/química , alfa Carioferinas/metabolismo , beta Carioferinas/química , beta Carioferinas/metabolismo , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa