RESUMO
Neurodegenerative dementias are progressive diseases that cause neuronal network breakdown in different brain regions often because of accumulation of misfolded proteins in the brain extracellular matrix, such as amyloids or inside neurons or other cell types of the brain. Several diagnostic protein biomarkers in body fluids are being used and implemented, such as for Alzheimer's disease. However, there is still a lack of biomarkers for co-pathologies and other causes of dementia. Such biofluid-based biomarkers enable precision medicine approaches for diagnosis and treatment, allow to learn more about underlying disease processes, and facilitate the development of patient inclusion and evaluation tools in clinical trials. When designing studies to discover novel biofluid-based biomarkers, choice of technology is an important starting point. But there are so many technologies to choose among. To address this, we here review the technologies that are currently available in research settings and, in some cases, in clinical laboratory practice. This presents a form of lexicon on each technology addressing its use in research and clinics, its strengths and limitations, and a future perspective.
Assuntos
Doença de Alzheimer , Humanos , Encéfalo , Biomarcadores , Neurônios , Medicina de Precisão , Peptídeos beta-AmiloidesRESUMO
Glial fibrillary acidic protein (GFAP) is a well-established biomarker of reactive astrogliosis in the central nervous system because of its elevated levels following brain injury and various neurological disorders. The advent of ultra-sensitive methods for measuring low-abundant proteins has significantly enhanced our understanding of GFAP levels in the serum or plasma of patients with diverse neurological diseases. Clinical studies have demonstrated that GFAP holds promise both as a diagnostic and prognostic biomarker, including but not limited to individuals with Alzheimer's disease. GFAP exhibits diverse forms and structures, herein referred to as its proteoform complexity, encompassing conformational dynamics, isoforms and post-translational modifications (PTMs). In this review, we explore how the proteoform complexity of GFAP influences its detection, which may affect the differential diagnostic performance of GFAP in different biological fluids and can provide valuable insights into underlying biological processes. Additionally, proteoforms are often disease-specific, and our review provides suggestions and highlights areas to focus on for the development of new assays for measuring GFAP, including isoforms, PTMs, discharge mechanisms, breakdown products, higher-order species and interacting partners. By addressing the knowledge gaps highlighted in this review, we aim to support the clinical translation and interpretation of GFAP in both CSF and blood and the development of reliable, reproducible and specific prognostic and diagnostic tests. To enhance disease pathology comprehension and optimise GFAP as a biomarker, a thorough understanding of detected proteoforms in biofluids is essential.
RESUMO
BACKGROUND: Depressive symptoms are associated with an increased risk of Alzheimer's disease (AD). There has been a recent emergence in plasma biomarkers for AD pathophysiology, such as amyloid-beta (Aß) and phosphorylated tau (p-tau), as well as for axonal damage (neurofilament light, NfL) and astrocytic activation (glial fibrillary acidic protein, GFAP). Hypothesizing that depressive symptoms may occur along the AD process, we investigated associations between plasma biomarkers of AD with depressive symptoms in individuals without dementia. METHODS: A two-stage meta-analysis was performed on 2 clinic-based and 6 population-based cohorts (N = 7210) as part of the Netherlands Consortium of Dementia Cohorts. Plasma markers (Aß42/40, p-tau181, NfL, and GFAP) were measured using Single Molecular Array (Simoa; Quanterix) assays. Depressive symptoms were measured with validated questionnaires. We estimated the cross-sectional association of each standardized plasma marker (determinants) with standardized depressive symptoms (outcome) using linear regressions, correcting for age, sex, education, and APOE ε4 allele presence, as well as subgrouping by sex and APOE ε4 allele. Effect estimates were entered into a random-effects meta-analysis. RESULTS: Mean age of participants was 71 years. The prevalence of clinically relevant depressive symptoms ranged from 1% to 22%. None of the plasma markers were associated with depressive symptoms in the meta-analyses. However, NfL was associated with depressive symptoms only in APOE ε4 carriers (ß 0.11; 95% CI: 0.05-0.17). CONCLUSIONS: Late-life depressive symptoms did not show an association to plasma biomarkers of AD pathology. However, in APOE ε4 allele carriers, a more profound role of neurodegeneration was suggested with depressive symptoms.
Assuntos
Doença de Alzheimer , Biomarcadores , Depressão , Proteínas tau , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Doença de Alzheimer/epidemiologia , Biomarcadores/sangue , Depressão/sangue , Depressão/epidemiologia , Idoso , Proteínas tau/sangue , Peptídeos beta-Amiloides/sangue , Estudos de Coortes , Feminino , Masculino , Países Baixos/epidemiologia , Proteínas de Neurofilamentos/sangue , Apolipoproteína E4/genética , Apolipoproteína E4/sangueRESUMO
Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality, characterized by progressive neuromuscular degeneration resulting from mutations in the survival motor neuron (SMN1) gene. The availability of disease-modifying therapies for SMA therapies highlights the pressing need for easily accessible and cost-effective blood biomarkers to monitor treatment response and for better disease management. Additionally, the wide implementation of newborn genetic screening programs in Western countries enables presymptomatic diagnosis of SMA and immediate treatment administration. However, the absence of monitoring and prognostic blood biomarkers for neurodegeneration in SMA hinders effective disease management. Neurofilament light protein (NfL) is a promising biomarker of neuroaxonal damage in SMA and reflects disease progression in children with SMA undergoing treatment. Recently, the European Medicines Agency issued a letter of support endorsing the potential utilization of NfL as a biomarker of pediatric neurological diseases, including SMA. Within this review, we comprehensively assess the potential applications of NfL as a monitoring biomarker for disease severity and treatment response in pediatric-onset SMA. We provide reference ranges for normal levels of serum based NfL in neurologically healthy children aged 0-18 years. These reference ranges enable accurate interpretation of NfL levels in children and can accelerate the implementation of NfL into clinical practice.
Assuntos
Biomarcadores , Atrofia Muscular Espinal , Proteínas de Neurofilamentos , Criança , Humanos , Lactente , Biomarcadores/sangue , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/sangue , Proteínas de Neurofilamentos/sangue , Valores de Referência , Recém-Nascido , Pré-Escolar , AdolescenteRESUMO
INTRODUCTION: For routine clinical implementation of Alzheimer's disease (AD) plasma biomarkers, fully automated random-access platforms are crucial to ensure reproducible measurements. We aimed to perform an analytical validation and to establish cutoffs for AD plasma biomarkers measured with Lumipulse. METHODS: Two cohorts were included. UNIPG: n = 450 paired cerebrospinal fluid (CSF)/plasma samples from subjects along the AD-continuum, subjects affected by other neurodegenerative diseases, and controls with known CSF profile; AMS: n = 40 plasma samples from AD and n = 40 controls. Plasma amyloid ß (Aß)42, Aß40, and p-tau181 were measured with Lumipulse. We evaluated analytical and diagnostic performance. RESULTS: Lumipulse assays showed high analytical performance. Plasma p-tau181 levels accurately reflected CSF A+/T+ profile in AD-dementia and mild cognitive impairment (MCI)-AD, but not in asymptomatic-AD. Plasma and CSF Aß42/40 values were concordant across clinical AD stages. Cutoffs and probability-based models performed satisfactorily in both cohorts. DISCUSSION: The identified cutoffs and probability-based models represent a significant step toward plasma AD molecular diagnosis.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Biomarcadores/líquido cefalorraquidianoRESUMO
INTRODUCTION: We developed a multimarker blood test result interpretation tool for the clinical dementia practice, including phosphorylated (P-)tau181, amyloid-beta (Abeta)42/40, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL). METHODS: We measured the plasma biomarkers with Simoa (n = 1199), applied LASSO regression for biomarker selection and receiver operating characteristics (ROC) analyses to determine diagnostic accuracy. We validated our findings in two independent cohorts and constructed a visualization approach. RESULTS: P-tau181, GFAP, and NfL were selected. This combination had area under the curve (AUC) = 83% to identify amyloid positivity in pre-dementia stages, AUC = 87%-89% to differentiate Alzheimer's or controls from frontotemporal dementia, AUC = 74%-76% to differentiate Alzheimer's or controls from dementia with Lewy bodies. Highly reproducible AUCs were obtained in independent cohorts. The resulting visualization tool includes UpSet plots to visualize the stand-alone biomarker results and density plots to visualize the biomarker results combined. DISCUSSION: Our multimarker blood test interpretation tool is ready for testing in real-world clinical dementia settings. HIGHLIGHTS: We developed a multimarker blood test interpretation tool for clinical dementia practice. Our interpretation tool includes plasma biomarkers P-tau, GFAP, and NfL. Our tool is particularly useful for Alzheimer's and frontotemporal dementia diagnosis.
Assuntos
Peptídeos beta-Amiloides , Biomarcadores , Proteína Glial Fibrilar Ácida , Proteínas de Neurofilamentos , Proteínas tau , Humanos , Biomarcadores/sangue , Proteínas tau/sangue , Proteínas de Neurofilamentos/sangue , Proteína Glial Fibrilar Ácida/sangue , Peptídeos beta-Amiloides/sangue , Masculino , Feminino , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Demência/sangue , Demência/diagnóstico , Fragmentos de Peptídeos/sangue , Demência Frontotemporal/sangue , Demência Frontotemporal/diagnóstico , Estudos de Coortes , Pessoa de Meia-Idade , Doença por Corpos de Lewy/sangue , Doença por Corpos de Lewy/diagnóstico , Curva ROCRESUMO
Cerebrospinal fluid (CSF) is an essential matrix for the discovery of neurological disease biomarkers. However, the high dynamic range of protein concentrations in CSF hinders the detection of the least abundant protein biomarkers by untargeted mass spectrometry. It is thus beneficial to gain a deeper understanding of the secretion processes within the brain. Here, we aim to explore if and how the secretion of brain proteins to the CSF can be predicted. By combining a curated CSF proteome and the brain elevated proteome of the Human Protein Atlas, brain proteins were classified as CSF or non-CSF secreted. A machine learning model was trained on a range of sequence-based features to differentiate between CSF and non-CSF groups and effectively predict the brain origin of proteins. The classification model achieves an area under the curve of 0.89 if using high confidence CSF proteins. The most important prediction features include the subcellular localization, signal peptides, and transmembrane regions. The classifier generalized well to the larger brain detected proteome and is able to correctly predict novel CSF proteins identified by affinity proteomics. In addition to elucidating the underlying mechanisms of protein secretion, the trained classification model can support biomarker candidate selection.
Assuntos
Pesquisa Biomédica , Proteoma , Humanos , Encéfalo , Transporte Proteico , Transporte Biológico , Proteínas do Líquido CefalorraquidianoRESUMO
OBJECTIVES: Neurofilament-light (NfL), glial fibrillary acidic protein (GFAP) and contactin-1 (CNTN1) are blood-based biomarkers that could contribute to monitoring and prediction of disease and treatment outcomes in neurological diseases. Pre-analytical sample handling might affect results, which could be disease-dependent. We tested common handling variations in serum of volunteers as well as in a defined group of patients with multiple sclerosis (pwMS). METHODS: Sample sets from 5 pwMS and 5 volunteers at the outpatient clinic were collected per experiment. We investigated the effect of the following variables: collection tube type, delayed centrifugation, centrifugation temperature, delayed storage after centrifugation and freeze-thawing. NfL and GFAP were measured by Simoa and CNTN1 by Luminex. A median recovery of 90-110% was considered stable. RESULTS: For most pre-analytical variables, serum NfL and CNTN1 levels remained unaffected. In the total group, NfL levels increased (121%) after 6 h of delay at 2-8â°C until centrifugation, while no significant changes were observed after 24 h delay at room temperature (RT). In pwMS specifically, CNTN1 levels increased from additional freeze-thaw cycles number 2 to 4 (111%-141%), whereas volunteer levels remained stable. GFAP showed good stability for all pre-analytical variables. CONCLUSIONS: Overall, the serum biomarkers tested were relatively unaffected by variations in sample handling. For serum NfL, we recommend storage at RT before centrifugation at 2-8â°C up to 6 h or at RT up to 24 h. For serum CNTN1, we advise a maximum of two freeze-thaw cycles. Our results confirm and expand on recently launched consensus standardized operating procedures.
Assuntos
Filamentos Intermediários , Esclerose Múltipla , Biomarcadores , Contactina 1 , Proteína Glial Fibrilar Ácida , Humanos , Esclerose Múltipla/diagnóstico , Proteínas de NeurofilamentosRESUMO
INTRODUCTION: We studied usefulness of combining blood amyloid beta (Aß)42/Aß40, phosphorylated tau (p-tau)217, and neurofilament light (NfL) to detect abnormal brain Aß deposition in different stages of early Alzheimer's disease (AD). METHODS: Plasma biomarkers were measured using mass spectrometry (Aß42/Aß40) and immunoassays (p-tau217 and NfL) in cognitively unimpaired individuals (CU, N = 591) and patients with mild cognitive impairment (MCI, N = 304) from two independent cohorts (BioFINDER-1, BioFINDER-2). RESULTS: In CU, a combination of plasma Aß42/Aß40 and p-tau217 detected abnormal brain Aß status with area under the curve (AUC) of 0.83 to 0.86. In MCI, the models including p-tau217 alone or Aß42/Aß40 and p-tau217 had similar AUCs (0.86-0.88); however, the latter showed improved model fit. The models were implemented in an online application providing individualized risk assessments (https://brainapps.shinyapps.io/PredictABplasma/). DISCUSSION: A combination of plasma Aß42/Aß40 and p-tau217 discriminated Aß status with relatively high accuracy, whereas p-tau217 showed strongest associations with Aß pathology in MCI but not in CU.
Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Amiloide , Peptídeos beta-Amiloides , Biomarcadores , Humanos , Fragmentos de Peptídeos , Tomografia por Emissão de Pósitrons/métodos , Proteínas tauRESUMO
INTRODUCTION: Pre-analytical sample handling might affect the results of Alzheimer's disease blood-based biomarkers. We empirically tested variations of common blood collection and handling procedures. METHODS: We created sample sets that address the effect of blood collection tube type, and of ethylene diamine tetraacetic acid plasma delayed centrifugation, centrifugation temperature, aliquot volume, delayed storage, and freeze-thawing. We measured amyloid beta (Aß)42 and 40 peptides with six assays, and Aß oligomerization-tendency (OAß), amyloid precursor protein (APP)699-711 , glial fibrillary acidic protein (GFAP), neurofilament light (NfL), total tau (t-tau), and phosphorylated tau181. RESULTS: Collection tube type resulted in different values of all assessed markers. Delayed plasma centrifugation and storage affected Aß and t-tau; t-tau was additionally affected by centrifugation temperature. The other markers were resistant to handling variations. DISCUSSION: We constructed a standardized operating procedure for plasma handling, to facilitate introduction of blood-based biomarkers into the research and clinical settings.
Assuntos
Doença de Alzheimer , Antígenos de Grupos Sanguíneos , Peptídeos beta-Amiloides , Biomarcadores , Humanos , Padrões de Referência , Manejo de Espécimes , Proteínas tauRESUMO
The aim of this study is to assess the effect of efavirenz exposure on neurocognitive functioning and investigate plasma neurofilament light (Nfl) as a biomarker for neurocognitive damage. Sub-analysis of the ESCAPE-study, a randomised controlled trial where virologically suppressed, cognitively asymptomatic HIV patients were randomised (2:1) to switch to rilpivirine or continue on efavirenz. At baseline and week 12, patients underwent an extensive neuropsychological assessment (NPA), and serum efavirenz concentration and plasma Nfl levels were measured. Subgroups of elevated (≥ 4.0 mg/L) and therapeutic (0.74 to< 4.0 mg/L) baseline efavirenz concentration were made. Differences between these groups in baseline NPA Z-scores and in delta scores after efavirenz discontinuation were assessed. Nfl level was measured using an ELISA analysis using single molecule array (Simoa) technology. Correlation of plasma NFL with NPA Z-scores was evaluated using a linear mixed model. The elevated group consisted of 6 patients and the therapeutic group of 48. At baseline, the elevated group showed lower composite Z-scores (median - 1.03; IQR 0.87 versus 0.27; 0.79. p 0.02). This effect was also seen on the subdomains verbal (p 0.01), executive functioning (p 0.02), attention (p < 0.01) and speed (p 0.01). In the switch group, the elevated group improved more on composite scores after discontinuing efavirenz (mean 0.58; SD 0.32 versus 0.22; 0.54, p 0.15). No association between plasma Nfl and composite Z-score was found. High efavirenz exposure is associated with worse cognitive functioning compared with patients with therapeutic concentrations. Plasma Nfl is not a suitable biomarker to measure cognitive damage in this group.
Assuntos
Alcinos/uso terapêutico , Fármacos Anti-HIV/uso terapêutico , Benzoxazinas/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Ciclopropanos/uso terapêutico , Infecções por HIV/tratamento farmacológico , Proteínas de Neurofilamentos/sangue , Rilpivirina/uso terapêutico , Adulto , Alcinos/sangue , Fármacos Anti-HIV/sangue , Doenças Assintomáticas , Atenção/efeitos dos fármacos , Benzoxazinas/sangue , Biomarcadores/sangue , Disfunção Cognitiva/sangue , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/virologia , Ciclopropanos/sangue , Função Executiva/efeitos dos fármacos , Feminino , Infecções por HIV/sangue , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , Humanos , Masculino , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Rilpivirina/sangue , Fala/efeitos dos fármacosRESUMO
BACKGROUND: Neurofilament light chain is a marker of axonal damage and is of interest as a biofluid biomarker for PD. The objective of this study was to investigate whether CSF or serum neurofilament contributes to a combination of CSF biomarkers in defining the optimal biomarker panel for discriminating PD patients from healthy controls. In addition, we aimed to assess whether CSF and/or serum neurofilament levels are associated with clinical measures of disease severity. METHODS: We measured neurofilament light chain levels in CSF and/or serum of 139 PD patients and 52 age-matched healthy controls. We used stepwise logistic regression analyses to test whether neurofilament contributes to a biomarker CSF panel including total, oligomeric, and phosphorylated α-synuclein and Alzheimer's disease biomarkers. Measures of disease severity included disease duration, UPDRS-III, Hoehn & Yahr stage, and MMSE. RESULTS: After correcting for age, CSF neurofilament levels were 42% higher in PD patients compared with controls (P < 0.01), whereas serum neurofilament levels were 37% higher (P = 0.08). Combining CSF neurofilament, phosphorylated-/total α-synuclein, and oligomeric-/total α-synuclein yielded the best-fitting model for discriminating PD patients from controls (area under the curve 0.92). The discriminatory potential of serum neurofilament in the CSF biomarker panel was similar (area under the curve 0.90). Higher serum neurofilament was associated with a lower MMSE score. There were no other associations between CSF and/or serum neurofilament levels and clinical disease severity. CONCLUSIONS: CSF neurofilament contributes to a panel of CSF α-synuclein species in differentiating PD patients from healthy controls. Serum neurofilament may have added value to a biofluid biomarker panel for differentiating PD patients from controls. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Biomarcadores , Filamentos Intermediários/metabolismo , Doença de Parkinson , alfa-Sinucleína , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/sangue , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/diagnóstico , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/líquido cefalorraquidiano , alfa-Sinucleína/sangue , alfa-Sinucleína/líquido cefalorraquidianoRESUMO
In early-stage Parkinson's disease (PD), cognitive impairment is common, and a variety of cognitive domains including memory, attention, and executive functioning may be affected. Cerebrospinal fluid (CSF) biomarkers are potential markers of cognitive functioning. We aimed to explore whether CSF α-synuclein species, neurofilament light chain, amyloid-ß42, and tau are associated with cognitive performance in early-stage PD patients. CSF levels of total-α-synuclein and phosphorylated-α-synuclein, neurofilament light chain, amyloid-ß42, and total-tau and phosphorylated-tau were measured in 26 PD patients (disease duration ≤5 years and Hoehn and Yahr stage 1-2.5). Multivariable linear regression models, adjusted for age, gender, and educational level, were used to assess the relationship between CSF biomarker levels and memory, attention, executive and visuospatial function, and language performance scores. In 26 early-stage PD patients, attention and memory were the most commonly affected domains. A higher CSF phosphorylated-α-synuclein/total-α-synuclein ratio was associated with better executive functioning (sß = 0.40). Higher CSF neurofilament light was associated with worse memory (sß = -0.59), attentional (sß = -0.32), and executive functioning (sß = -0.35). Reduced CSF amyloid-ß42 levels were associated with poorer attentional functioning (sß = 0.35). Higher CSF phosphorylated-tau was associated with worse language functioning (sß = -0.33). Thus, CSF biomarker levels, in particular neurofilament light, were related to the most commonly affected cognitive domains in early-stage PD. This indicates that CSF biomarker levels may identify early-stage PD patients who are at an increased risk of developing cognitive impairment.
Assuntos
Atenção/fisiologia , Axônios/patologia , Transtornos Cognitivos/fisiopatologia , Transtornos da Memória/fisiopatologia , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Estudos Transversais , Função Executiva/fisiologia , Feminino , Humanos , Filamentos Intermediários/metabolismo , Idioma , Modelos Lineares , Masculino , Memória/fisiologia , Pessoa de Meia-Idade , Análise Multivariada , Testes Neuropsicológicos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fosforilação , alfa-Sinucleína/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidianoRESUMO
OBJECTIVE: We investigated the association of plasma amyloid beta (Abeta)40, Abeta42, and total tau (tTau) with the presence of Alzheimer pathological changes in cognitively normal individuals with subjective cognitive decline (SCD). METHODS: We included 248 subjects with SCD (61 ± 9 years, 42% female, Mini-Mental State Examination = 28 ± 2) from the SCIENCe project and Amsterdam Dementia Cohort. Subjects were dichotomized as amyloid abnormal by cerebrospinal fluid (CSF) and positron emission tomography (PET). Baseline plasma Abeta40, Abeta42, and tTau were measured using Simoa technology. Associations between plasma levels and amyloid status were assessed using logistic regression analyses and receiver operating characteristic analyses. Association of plasma levels with risk of clinical progression to mild cognitive impairment (MCI) or dementia was assessed using Cox proportional hazard models. RESULTS: Fifty-seven (23%) subjects were CSF-amyloid abnormal. Plasma Abeta42/Abeta40 ratio and plasma Abeta42 alone, but not tTau, identified abnormal CSF-amyloid status (plasma ratio: area under the curve [AUC] = 77%, 95% confidence interval [CI] = 69-84%; plasma Abeta42: AUC = 66%, 95% CI: 58-74%). Combining plasma ratio with age and apolipoprotein E resulted in AUC = 83% (95% CI = 77-89%). The Youden cutoff of the plasma ratio gave a sensitivity of 76% and specificity of 75%, and applying this as a prescreener would reduce the number of lumbar punctures by 51%. Using PET as outcome, a comparable reduction in number of PET scans would be achieved when applying the plasma ratio as prescreener. In addition, low plasma ratio was associated with clinical progression to MCI or dementia (hazard ratio = 2.0, 95% CI = 1.4-2.3). INTERPRETATION: Plasma Abeta42/Abeta40 ratio has potential as a prescreener to identify Alzheimer pathological changes in cognitively normal individuals with SCD. Ann Neurol 2018;84:656-666.
Assuntos
Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/sangue , Biomarcadores/sangue , Diagnóstico Precoce , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e EspecificidadeRESUMO
Blood biomarkers have emerged as accessible, cost-effective, and highly promising tools for advancing the diagnostics of Alzheimer's disease. However, transitioning from cerebrospinal fluid biomarkers to blood biomarkers-eg, to verify amyloid ß pathology-requires careful consideration. This Series paper highlights the main challenges in the implementation of blood biomarkers for Alzheimer's disease in different possible contexts of use. Despite the robustness of measuring blood biomarker concentrations, the widespread adoption of blood biomarkers requires rigorous standardisation efforts to address inherent challenges in diverse contexts of use. The challenges include understanding the effect of pre-analytical and analytical conditions, potential confounding factors, and comorbidities that could influence outcomes of blood biomarkers and their use in diverse populations. Additionally, distinct scenarios present their own specific challenges. In memory clinics, the successful integration of blood biomarkers in diagnostic tests will require well-established diagnostic accuracy and comprehensive assessments of the effect of blood biomarkers on the diagnostic confidence and patient management of clinicians. In primary care settings, and even more when implemented in population-based screening programmes for which no experience with any biomarkers for Alzheimer's disease currently exists, the implementation of blood biomarkers will be challenged by the need for education of primary care clinical staff and clear guidelines. However, despite the challenges, blood biomarkers hold great promise for substantially enhancing the diagnostic accuracy and effectively streamlining referral processes, leading to earlier diagnosis and access to treatments. The ongoing efforts that are shaping the integration of blood biomarkers across diverse clinical settings pave the way towards precision medicine in Alzheimer's disease.
Assuntos
Doença de Alzheimer , Biomarcadores , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Humanos , Biomarcadores/sangueRESUMO
Traumatic brain injury (TBI) and Alzheimer's disease (AD) have overlapping mechanisms but it remains unknown if pathophysiological characteristics and cognitive trajectories in AD patients are influenced by TBI history. Here, we studied AD patients (stage MCI or dementia) with TBI history (ADTBI+, n=110), or without (ADTBI-, n=110) and compared baseline CSF concentrations of amyloid beta 1-42 (Aß42), phosphorylated tau181 (pTau181), total tau, neurofilament light chain (NfL), synaptosomal associated protein-25kDa (SNAP25), neurogranin (Ng), neuronal pentraxin-2 (NPTX2) and glutamate receptor-4 (GluR4), as well as differences in cognitive trajectories using linear mixed models. Explorative, analyses were repeated within stratified TBI groups by TBI characteristics (timing, severity, number). We found no differences in baseline CSF biomarker concentrations nor in cognitive trajectories between ADTBI+ and ADTBI- patients. TBI >5 years ago was associated with higher NPTX2 and a tendency for higher SNAP25 concentrations compared to TBI ≤ 5 years ago, suggesting that TBI may be associated with long-term synaptic dysfunction only when occurring before onset or in a pre-clinical disease stage of AD.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Lesões Encefálicas Traumáticas , Cognição , Proteínas tau , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/complicações , Biomarcadores/líquido cefalorraquidiano , Masculino , Feminino , Idoso , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Neurogranina/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Pessoa de Meia-Idade , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico , Idoso de 80 Anos ou mais , Proteína 25 Associada a Sinaptossoma/líquido cefalorraquidiano , Proteína C-Reativa/líquido cefalorraquidiano , Proteínas do Tecido NervosoRESUMO
BACKGROUND: Lack of early molecular biomarkers in sporadic behavioral variants of frontotemporal dementia (bvFTD) and its clinical overlap with primary psychiatric disorders (PPD) hampers its diagnostic distinction. Synaptic dysfunction is an early feature in bvFTD and identification of specific biomarkers might improve its diagnostic accuracy. Our goal was to understand the differential diagnostic potential of cerebrospinal fluid (CSF) synaptic biomarkers in bvFTD versus PPD and their specificity towards bvFTD compared with Alzheimer's disease (AD) and controls. Additionally, we explored the association of CSF synaptic biomarkers with social cognition, cognitive performance, and disease severity in these clinical groups. METHODS: Participants with probable bvFTD (n = 57), PPD (n = 71), AD (n = 60), and cognitively normal controls (n = 39) with available CSF, cognitive tests, and disease severity as frontotemporal lobar degeneration-modified clinical dementia rating scale (FTLD-CDR) were included. In a subset of bvFTD and PPD cases, Ekman 60 faces test scores for social cognition were available. CSF synaptosomal-associated protein 25 (SNAP25), neurogranin (Ng), neuronal pentraxin 2 (NPTX2), and glutamate receptor 4 (GluR4) were measured, along with neurofilament light (NfL), and compared between groups using analysis of covariance (ANCOVA) and logistic regression. Diagnostic accuracy was assessed using ROC analyses, and biomarker panels were selected using Wald's backward selection. Correlations with cognitive measures were performed using Pearson's partial correlation analysis. RESULTS: NPTX2 concentrations were lower in the bvFTD group compared with PPD (p < 0.001) and controls (p = 0.003) but not compared with AD. Concentrations of SNAP25 (p < 0.001) and Ng (p < 0.001) were elevated in patients with AD versus those with bvFTD and controls. The modeled panel for differential diagnosis of bvFTD versus PPD consisted of NfL and NPTX2 (AUC = 0.96, CI: 0.93-0.99, p < 0.001). In bvFTD versus AD, the modeled panel consisted of NfL, SNAP25, Ng, and GluR4 (AUC = 0.86, CI: 0.79-0.92, p < 0.001). In bvFTD, lower NPTX2 (Pearson's r = 0.29, p = 0.036) and GluR4 (Pearson's r = 0.34, p = 0.014) concentrations were weakly associated with worse performance of total cognitive score. Lower GluR4 concentrations were also associated with worse MMSE scores (Pearson's r = 0.41, p = 0.002) as well as with worse executive functioning (Pearson's r = 0.36, p = 0.011) in bvFTD. There were no associations between synaptic markers and social cognition or disease severity in bvFTD. CONCLUSION: Our findings of involvement of NTPX2 in bvFTD but not PPD contribute towards better understanding of bvFTD disease pathology.