Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 376, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342129

RESUMO

BACKGROUND: The Calakmul Biosphere Reserve (CBR) is known for its rich animal and plant biodiversity, yet its microbial communities remain largely unknown. The reserve does not possess permanent bodies of water; nevertheless, seasonal depressions associated with fractures create wetlands, known locally as aguadas. Given the recent construction of the Maya train that crosses the CRB, it is essential to assess the biodiversity of its microorganisms and recognize their potential as a valuable source of goods. This evaluation is pivotal in mitigating potential mismanagement of the forest ecosystem. To enhance comprehension of microbial communities, we characterized the microbiota in three different wetlands. Ag-UD1 and Ag-UD2 wetlands are located in a zone without human disturbances, while the third, Ag-SU3, is in a semi-urbanized zone. Sampling was carried out over three years (2017, 2018, and 2019), enabling the monitoring of spatiotemporal variations in bacterial community diversity. The characterization of microbiome composition was conducted using 16S rRNA metabarcoding. Concurrently, the genomic potential of select samples was examined through shotgun metagenomics. RESULTS: Statistical analysis of alpha and beta diversity indices showed significant differences among the bacterial communities found in undisturbed sites Ag-UD1 and Ag-UD2 compared to Ag-SU3. However, no significant differences were observed among sites belonging to the undisturbed area. Furthermore, a comparative analysis at the zone level reveals substantial divergence among the communities, indicating that the geographic location of the samples significantly influences these patterns. The bacterial communities in the CBR wetlands predominantly consist of genera from phyla Actinobacteria, Acidobacteria, and Proteobacteria. CONCLUSION: This characterization has identified the composition of microbial communities and provided the initial overview of the metabolic capacities of the microbiomes inhabiting the aguadas across diverse conservation zones. The three sites exhibit distinct microbial compositions, suggesting that variables such as chemical composition, natural and anthropogenic disturbances, vegetation, and fauna may play a pivotal role in determining the microbial structure of the aguadas. This study establishes a foundational baseline for evaluating the impact of climatic factors and human interventions on critical environments such as wetlands.


Assuntos
Bactérias , Biodiversidade , Microbiota , RNA Ribossômico 16S , Áreas Alagadas , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Microbiota/genética , Metagenômica , Filogenia , DNA Bacteriano/genética , Microbiologia do Solo
2.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37669898

RESUMO

Small peptide aldehydes (SPAs) with protease inhibitory activity are naturally occurring compounds shown to be synthesized by non-ribosomal peptide synthetases (NRPS). SPAs are widely used in biotechnology and have been utilized as therapeutic agents. They are also physiologically relevant and have been postulated to regulate the development of their producing microorganisms. Previously, we identified an NRPS-like biosynthetic gene cluster (BGC) in Streptomyces lividans 66 that lacked a condensation (C) domain but included a tRNA-utilizing enzyme (tRUE) belonging to the leucyl/phenylalanyl (L/F) transferase family. This system was predicted to direct the synthesis of a novel SPA, which we named livipeptin. Using evolutionary genome mining approaches, here, we confirm the presence of L/F transferase tRUEs within the genomes of diverse Streptomyces and related organisms, including fusions with the anticipated C-minus NRPS-like protein. We then demonstrate genetic functional cooperation between the identified L/F-transferase divergent tRUE homolog with the C-minus NRPS, leading to the synthesis of a metabolic fraction with protease inhibitory activity. Semisynthetic assays in the presence of RNAse revealed that the productive interaction between the tRUE and the C-minus NRPS enzymes is indeed tRNA dependent. We expect our findings to boost the discovery of SPAs, as well as the development of protease-mediated biotechnologies, by exploiting the uncovered genetic basis for synthesizing putative acetyl-leu/phe-arginine protease inhibitors. Furthermore, these results will facilitate the purification and structural elucidation of livipeptin, which has proven difficult to chemically characterize. SIGNIFICANCE: The discovery of natural products biosynthetic genes marks a significant advancement in our understanding of these metabolites, for example of their evolution, activity, and biosynthesis, but also opens biotechnological opportunities and knowledge to advance genome mining approaches. We made this possible by uncovering a new biosynthetic pathway in Streptomyces lividans 66 shown to direct the synthesis of a strong protease inhibitor, termed livipeptin, following unprecedented biosynthetic rules and genes. Thus, by shedding light on the genetic mechanisms predicted to govern the production of acetyl-leu/phe-arginine protease inhibitors, including the elusive livipeptin, this study enables novel protease-mediated biotechnologies as well as approaches for discovering protease inhibitors from genome data.


Assuntos
Anti-Infecciosos , Streptomyces lividans , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Inibidores de Proteases , Peptídeo Sintases/metabolismo , Peptídeos/genética , Peptídeo Hidrolases/genética , RNA de Transferência/genética , Transferases/genética , Arginina , Família Multigênica
3.
Microb Biotechnol ; 8(2): 239-52, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25296650

RESUMO

The 6-phosphogluconate dehydrogenase superfamily oxidize and reduce a wide range of substrates, making their functional annotation challenging. Ketol-acid reductoisomerase (KARI), encoded by the ilvC gene in branched-chain amino acids biosynthesis, is a promiscuous reductase enzyme within this superfamily. Here, we obtain steady-state enzyme kinetic parameters for 10 IlvC homologues from the genera Streptomyces and Corynebacterium, upon eight selected chemically diverse substrates, including some not normally recognized by enzymes of this superfamily. This biochemical data suggested a Streptomyces biosynthetic interlock between proline and the branched-chain amino acids, mediated by enzyme substrate promiscuity, which was confirmed via mutagenesis and complementation analyses of the proC, ilvC1 and ilvC2 genes in Streptomyces coelicolor. Moreover, both ilvC orthologues and paralogues were analysed, such that the relationship between gene duplication and functional diversification could be explored. The KARI paralogues present in S. coelicolor and Streptomyces lividans, despite their conserved high sequence identity (97%), were shown to be more promiscuous, suggesting a recent functional diversification. In contrast, the KARI paralogue from Streptomyces viridifaciens showed selectivity towards the synthesis of valine precursors, explaining its recruitment within the biosynthetic gene cluster of valanimycin. These results allowed us to assess substrate promiscuity indices as a tool to annotate new molecular functions with metabolic implications.


Assuntos
Aminoácidos/biossíntese , Vias Biossintéticas/genética , Cetol-Ácido Redutoisomerase/genética , Cetol-Ácido Redutoisomerase/metabolismo , Streptomyces/enzimologia , Streptomyces/genética , Corynebacterium/enzimologia , Corynebacterium/genética , Corynebacterium/metabolismo , Técnicas de Inativação de Genes , Teste de Complementação Genética , Variação Genética , Streptomyces/metabolismo , Especificidade por Substrato
4.
J Mol Biol ; 411(1): 143-57, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21635898

RESUMO

Evolution of proteins involves sequence changes that are frequently localized at loop regions, revealing their important role in natural evolution. However, the development of strategies to understand and imitate such events constitutes a challenge to design novel enzymes in the laboratory. In this study, we show how to adapt loop swapping as semiautonomous units of functional groups in an enzyme with the (ß/α)(8)-barrel and how this functional adaptation can be measured in vivo. To mimic the natural mechanism providing loop variability in antibodies, we developed an overlap PCR strategy. This includes introduction of sequence diversity at two hinge residues, which connect the new loops with the rest of the protein scaffold, and we demonstrate that this is necessary for a successful exploration of functional sequence space. This design allowed us to explore the sequence requirements to functional adaptation of each loop replacement that may not be sampled otherwise. Libraries generated following this strategy were evaluated in terms of their folding competence and their functional proficiency, an observation that was formalized as a Structure-Function Loop Adaptability value. Molecular details about the function and structure of some variants were obtained by enzyme kinetics and circular dichroism. This strategy yields functional variants that retain the original activity at higher frequencies, suggesting a new strategy for protein engineering that incorporates a more divergent sequence exploration beyond that limited to point mutations. We discuss how this approach may provide insights into the mechanism of enzyme evolution and function.


Assuntos
Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/metabolismo , Evolução Molecular Direcionada/métodos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Engenharia de Proteínas/métodos , Aldose-Cetose Isomerases/genética , Proteínas de Escherichia coli/genética , Cinética , Modelos Moleculares , Reação em Cadeia da Polimerase/métodos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Recombinação Genética
5.
Protein Sci ; 19(3): 535-43, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20066665

RESUMO

A good model to experimentally explore evolutionary hypothesis related to enzyme function is the ancient-like dual-substrate (beta alpha)(8) phosphoribosyl isomerase A (PriA), which takes part in both histidine and tryptophan biosynthesis in Streptomyces coelicolor and related organisms. In this study, we determined the Michaelis-Menten enzyme kinetics for both isomerase activities in wild-type PriA from S. coelicolor and in selected single-residue monofunctional mutants, identified after Escherichia coli in vivo complementation experiments. Structural and functional analyses of a hitherto unnoticed residue contained on the functionally important beta --> alpha loop 5, namely, Arg(139), which was postulated on structural grounds to be important for the dual-substrate specificity of PriA, is presented for the first time. Indeed, enzyme kinetics analyses done on the mutant variants PriA_Ser(81)Thr and PriA_Arg(139)Asn showed that these residues, which are contained on beta --> alpha loops and in close proximity to the N-terminal phosphate-binding site, are essential solely for the phosphoribosyl anthranilate isomerase activity of PriA. Moreover, analysis of the X-ray crystallographic structure of PriA_Arg(139)Asn elucidated at 1.95 A herein strongly implicates the occurrence of conformational changes in this beta --> alpha loop as a major structural feature related to the evolution of the dual-substrate specificity of PriA. It is suggested that PriA has evolved by tuning a fine energetic balance that allows the sufficient degree of structural flexibility needed for accommodating two topologically dissimilar substrates--within a bifunctional and thus highly constrained active site--without compromising its structural stability.


Assuntos
Aldose-Cetose Isomerases/química , Evolução Molecular , Streptomyces coelicolor/enzimologia , Aldose-Cetose Isomerases/genética , Sequência de Aminoácidos , Arginina/química , Asparagina/química , Domínio Catalítico , Cristalografia por Raios X , Cinética , Conformação Proteica , Estrutura Secundária de Proteína , Análise de Sequência de Proteína , Serina/química , Treonina/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa