Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Exp Parasitol ; 262: 108787, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759776

RESUMO

New affordable drugs are needed for the treatment of infection with the protozoan parasite Trypanosoma cruzi responsible for the Chagas disease (CD). Only two old drugs are currently available, nifurtimox and benznidazole (Bz) but they exhibit unwanted side effects and display a weak activity in the late chronic phase of the disease. In this context, we evaluated the activity of a series of aryl-pyrazolone derivatives against T cruzi, using both bloodstream trypomastigote and intracellular amastigote forms of the parasite. The test compounds originate from a series of anticancer agents targeting the immune checkpoint ligand PD-L1 and bear an analogy with known anti-trypanosomal pyrazolones. A first group of 6 phenyl-pyrazolones was tested, revealing the activity of a single pyridyl-pyrazolone derivative. Then a second group of 8 compounds with a common pyridyl-pyrazolone core was evaluated. The in vitro testing process led to the identification of two non-cytotoxic and highly potent molecules against the intracellular form of T. cruzi, with an activity comparable to Bz. Moreover, one compound revealed an activity largely superior to that of Bz against bloodstream trypomastigotes, while being non-cytotoxic (selectivity index >1000). Unfortunately, the compound showed little activity in vivo, most likely due to its very limited plasma stability. However, the study opens novel perspectives for the design of new anti-trypanosomal products and the mechanism of action of the compounds is discussed.


Assuntos
Doença de Chagas , Pirazolonas , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Pirazolonas/farmacologia , Pirazolonas/química , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Animais , Camundongos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Piridinas/farmacologia , Piridinas/química , Concentração Inibidora 50 , Nitroimidazóis/farmacologia , Nitroimidazóis/química
2.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612409

RESUMO

Limonoids are extremely diversified in plants, with many categories of products bearing an intact, rearranged or fragmented oxygenated scaffold. A specific subgroup of fragmented or degraded limonoids derives from the tetranortriterpenoid prieurianin, initially isolated from the tree Trichilia prieuriana but also found in other plants of the Meliaceae family, including the more abundant species Aphanamixis polystachya. Prieurianin-type limonoids include about seventy compounds, among which are dregeanin and rohitukin. Prieurianin and analogs exhibit insecticidal, antimicrobial, antiadipogenic and/or antiparasitic properties but their mechanism of action remains ill-defined at present. Previous studies have shown that prieurianin, initially known as endosidin 1, stabilizes the actin cytoskeleton in plant and mammalian cells via the modulation of the architecture and dynamic of the actin network, most likely via interference with actin-binding proteins. A new mechanistic hypothesis is advanced here based on the recent discovery of the targeting of the chaperone protein Hsp47 by the fragmented limonoid fraxinellone. Molecular modeling suggested that prieurianin and, to a lesser extent dregeanin, can form very stable complexes with Hsp47 at the protein-collagen interface. Hsp-binding may account for the insecticidal action of the product. The present review draws up a new mechanistic portrait of prieurianin and provides an overview of the pharmacological properties of this atypical limonoid and its chemical family.


Assuntos
Inseticidas , Limoninas , Meliaceae , Animais , Limoninas/farmacologia , Citoesqueleto de Actina , Actinas , Antiparasitários , Inseticidas/farmacologia , Mamíferos
3.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928509

RESUMO

Inhibitors of monoamine oxidases (MAOs) are of interest for the treatment of neurodegenerative disorders and other human pathologies. In this frame, the present work describes different synthetic strategies to obtain MAO inhibitors via the coupling of the aminocoumarin core with arylsulfonyl chlorides followed by copper azide-alkyne cycloaddition, leading to coumarin-sulfonamide-nitroindazolyl-triazole hybrids. The nitration position on the coumarin moiety was confirmed through nuclear magnetic resonance spectroscopy and molecular electron density theory in order to elucidate the molecular mechanism and selectivity of the electrophilic aromatic substitution reaction. The coumarin derivatives were evaluated for their inhibitory potency against monoamine oxidases and cholinesterases. Molecular docking calculations provided a rational binding mode of the best compounds in the series with MAO A and B. The work identified hybrids 14a-c as novel MAO inhibitors, with a selective action against isoform B, of potential interest to combat neurological diseases.


Assuntos
Cumarínicos , Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase , Monoaminoxidase , Triazóis , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/síntese química , Triazóis/química , Triazóis/farmacologia , Monoaminoxidase/metabolismo , Monoaminoxidase/química , Humanos , Sulfonamidas/química , Sulfonamidas/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Teoria da Densidade Funcional
4.
Biomacromolecules ; 24(2): 756-765, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36724436

RESUMO

Inspired by automated DNA synthesis, electron-rich dialkoxynaphthalene (DAN) donor and electron-deficient naphthalene-tetracarboxylic diimide (NDI) acceptor phosphodiester-linked homohexamers were synthesized by the phosphoramidite method. Two types of hexamers were prepared, one with only one phosphodiester between the aromatics (i.e., DAN or NDI) and a second with two phosphodiesters around a propanediol between the aromatics, leading to the latter more flexible and more hydrophilic hexamers. The folding properties of these homohexamers alone or mixed together, in water only, were studied by UV-visible absorption spectroscopy and atomic force microscopy (AFM). AFM imaging revealed that a 1:1 mixture of hexaDAN and hexaNDI formed fibers by charge transfer donor-acceptor recognition leading to a hydrogel after drying. The organization of the resulting structures is strongly dependent on the nature of the complementary partner, leading to the formation of mono- or multilayer hydrogel networks with different compactness.


Assuntos
Imidas , Água , Imidas/química , Naftalenos/química , Hidrogéis
5.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838813

RESUMO

The antitumor drug topotecan (TPT) is a potent inhibitor of topoisomerase I, triggering DNA breaks lethal for proliferating cancer cells. The mechanism is common to camptothecins SN38 (the active metabolite of irinotecan) and belotecan (BLT). Recently, TPT was shown to bind the ribosomal protein L15, inducing an antitumor immune activation independent of topoisomerase I. We have modeled the interaction of four camptothecins with RPL15 derived from the 80S human ribosome. Two potential drug-binding sites were identified at Ile135 and Phe129. SN38 can form robust RPL15 complexes at both sites, whereas BLT essentially gave stable complexes with site Ile135. The empirical energy of interaction (ΔE) for SN38 binding to RPL15 is similar to that determined for TPT binding to the topoisomerase I-DNA complex. Molecular models with the ribosomal protein L11 sensitive to topoisomerase inhibitors show that SN38 can form a robust complex at a single site (Cys25), much more stable than those with TPT and BLT. The main camptothecin structural elements implicated in the ribosomal protein interaction are the lactone moiety, the aromatic system and the 10-hydroxyl group. The study provides guidance to the design of modulators of ribosomal proteins L11 and L15, both considered anticancer targets.


Assuntos
Antineoplásicos , DNA Topoisomerases Tipo I , Humanos , DNA Topoisomerases Tipo I/metabolismo , Simulação de Acoplamento Molecular , Camptotecina , Antineoplásicos/farmacologia , Proteínas Ribossômicas/metabolismo , Topotecan/farmacologia , DNA , Inibidores da Topoisomerase I
6.
J Recept Signal Transduct Res ; 42(5): 454-461, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34789056

RESUMO

The pseudoguaianolide-type sesquiterpene lactone (SL) britannin (BRT), found in different Inula species, has been characterized as a potent anticancer agent acting via modulation of the transcription factor NFkB and the Nrf2-Keap1 signaling pathway. In addition, a BRT-induced down-regulation of the immune checkpoint PD-L1 (programmed cell death ligand 1) expressed on cancer cells has been evidenced. Here we have performed a docking analysis of the direct binding of BRT to the PD-L1 protein, both in its monomeric and dimeric state. BRT appears to form stable complexes with PD-L1, with a preference for the dimeric form, binding at the interface of the two monomers. The calculated empirical energy of interaction (ΔE) value reaches -63.1 kcal/mol for the BRT-PD-L1 dimer complex, not far from the value calculated with the reference PD-L1 ligand BMS-202 (ΔE = -73.4 kcal/mol) under identical conditions. We also studied the potential PD-L1 dimer binding of 15 pseudoguaianolide sesquiterpene lactones analogues to BRT, including helenalin, gaillardin, bigelovin, coronopilin, and others. The docking analysis predicted that the SL chamissonolide (CHM) can also form equally stable complexes with PD-L1 dimer (ΔE = -64.8 kcal/mol). Preliminary compound structure-PD-L1 binding relationships have been delineated. This computational study supports the proposed interaction of BRT with PD-L1 and provides a guidance to the design of novel PD-L1 binders incorporating a SL-like tricyclic core unit.


Assuntos
Antineoplásicos , Sesquiterpenos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lactonas/química , Lactonas/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Sesquiterpenos/química
7.
Pharmacol Res ; 179: 106220, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35405309

RESUMO

Despite novel targeted and immunotherapies, the prognosis remains bleak for patients with hepatocellular carcinoma (HCC), especially for advanced and/or metastatic forms. The rapid emergence of drug resistance is a major obstacle in the success of chemo-, targeted-, immuno-therapies of HCC. Novel targets are needed. The prominent roles of the small GTPase Rac1 in the development and progression of HCC are discussed here, together with its multiple protein partners, and the targeting of Rac1 with RNA-based regulators and small molecules. We discuss the oncogenic functions of Rac1 in HCC, including the contribution of Rac1 mutants and isoform Rac1b. Rac1 is a ubiquitous target, but the protein is frequently overexpressed and hyperactivated in HCC. It contributes to the aggressivity of the disease, with key roles in cancer cell proliferation, tumor metastasis and resistance to treatment. Small molecule targeting Rac1, indirectly or directly, have shown anticancer effects in HCC experimental models. Rac1-binding agents such as EHT 1864 and analogues offer novel opportunities to combat HCC. We discuss the different modalities to repress Rac1 overactivation in HCC with small molecules and the combination with reference drugs to promote cancer cell death and to repress cell invasion. We highlight the necessity to combine Rac1-targeted approach with appropriate biomarkers to select Rac1 activated tumors. Our analysis underlines the prominent oncogenic functions of Rac1 in HCC and discuss the modalities to target this small GTPase. Rac1 shall be considered as a valid target to limit the acquired and intrinsic resistance of HCC tumors and their metastatic potential.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Monoméricas de Ligação ao GTP , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Monoméricas de Ligação ao GTP/uso terapêutico , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
Inflamm Res ; 71(3): 267-276, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35034149

RESUMO

OBJECTIVE AND DESIGN: Japonicone A (Jap-A) is a sesquiterpene lactone (SL) dimer isolated from the plant Inula japonica Thunb. and the leading compound in the japonicone series of SL dimers which comprises 25 members (Jap-A to Jap-Y). We have analyzed the anticancer properties of Jap-A and the associated molecular targets. METHODS: All literature data on japonicones and related SL dimers, including inulanolide A (Inu-A) and lineariifolianoid A (Lin-A) have been analyzed. Molecular models of the compound/target interactions were constructed to support our analysis. RESULTS: Inulae Flos (Xuan Fu Hua) is used in traditional medicine in China and Korea to treat inflammatory diseases. The plant contains diverse japonicones and structurally related SL dimers. The interactions of Jap-A with the two main proteins, the pro-inflammatory cytokine TNF-α and the ubiquitin ligase MDM2, are at the origin of the anti-inflammatory and anticancer effects. Molecular docking analyses suggest that Inu-A is better adapted than Lin-A and Jap-A to form stable complexes with both TNF-α and MDM2. Jap-A exhibits marked capacities to inhibit cancer cell proliferation and dissemination and to trigger apoptosis, both in vitro and in vivo in several tumor models in mice. Its analogue Inu-A is more potent, functioning as a dual inhibitor of the MDM2-NFAT1 pathway. CONCLUSION: This review shed some new light on the molecular targets and potential therapeutic benefits of these SL dimers and should help the design of novel anticancer agents derived from these compounds.


Assuntos
Inula , Sesquiterpenos de Eudesmano , Sesquiterpenos , Animais , Lactonas/farmacologia , Lactonas/uso terapêutico , Camundongos , Simulação de Acoplamento Molecular , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Sesquiterpenos de Guaiano
9.
J Biochem Mol Toxicol ; 36(9): e23130, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35686814

RESUMO

Glycogen synthase kinase-3ß (GSK-3ß) is a target enzyme considered for the treatment of multiple human diseases, from neurodegenerative pathologies to viral infections and cancers. Numerous inhibitors of GSK-3ß have been discovered but thus far only a few have reached clinical trials and only one drug, tideglusib (1), has been registered. Natural products targeting GSK-3ß have been identified, including the two anticancer limonoids obacunone (5) and gedunin (4), both presenting a furyl-δ-lactone core. To help identifying novel GSK-3ß ligands, we have performed a molecular docking study with 15 complementary natural products bearing a furyl-δ-lactone unit (such as limonin (6) and kihadanins A (8) and B (9)) or a closely related structure (such as cedrelone (10) and nimbolide (11)). The formation of GSK-3ß-binding complexes for those natural products was compared to reference GSK-3ß ATP-competitive inhibitors LY2090314 (3) and AR-A014418 (2). Our in silico analysis led to the identification of two new GSK-3ß-binding natural products: kihadanin B (9) and nomilin (7). The latter surpassed the reference compounds in terms of calculated empirical energy of interaction (ΔE). Nomilin (7) can possibly bind to the active site of GSK-3ß, notably via the furyl-δ-lactone core and its 1-acetyl group, implicated in the protein interaction. Compound structure-binding relationships are discussed. The study should help the discovery of novel natural products targeting GSK-3ß.


Assuntos
Produtos Biológicos , Limoninas , Triterpenos , Trifosfato de Adenosina/metabolismo , Benzoxepinas , Glicogênio Sintase Quinase 3 beta , Humanos , Lactonas/farmacologia , Ligantes , Limoninas/farmacologia , Simulação de Acoplamento Molecular
10.
Molecules ; 27(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36144645

RESUMO

The para-terphenyl derivative vialinin A (Vi-A), isolated from Thelephora fungi, has been characterized as a potent inhibitor of the ubiquitin-specific protease 4 (USP4). Blockade of USP4 contributes to the anti-inflammatory and anticancer properties of the natural product. We have investigated the interaction of Vi-A with USP4 by molecular modeling, to locate the binding site (around residue V98 within the domain in USP segment) and to identify the binding process and interaction contacts. From this model, a series of 32 p-terphenyl compounds were tested as potential USP4 binders, mainly in the vialinin, terrestrin and telephantin series. We identified 11 compounds presenting a satisfactory USP4 binding capacity, including two fungal products, vialinin B and aurantiotinin A, with a more favorable empirical energy of USP4 interaction (ΔE) than the reference product Vi-A. The rare p-terphenyl aurantiotinin A, isolated from the basidiomycete T. aurantiotincta, emerged as a remarkable USP4 binder. Structure-binding relationships have been identified and discussed, to guide the future design of USP4 inhibitors based on the p-terphenyl skeleton. The docking study should help the identification of other protease inhibitors from fungus.


Assuntos
Basidiomycota , Produtos Biológicos , Compostos de Terfenil , Anti-Inflamatórios , Basidiomycota/química , Simulação de Acoplamento Molecular , Inibidores de Proteases , Compostos de Terfenil/química , Proteases Específicas de Ubiquitina
11.
Mem Inst Oswaldo Cruz ; 116: e210084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34431854

RESUMO

Extracts of the plant Glycyrrhiza glabra (licorice) are used in traditional medicine to treat malaria. The main active components are the saponin glycyrrhizin (GLR) and its active metabolite glycyrrhetinic acid (GA) which both display activities against Plasmodium falciparum. We have identified three main mechanisms at the origin of their anti-plasmodial activity: (i) drug-induced disorganisation of membrane lipid rafts, (ii) blockade of the alarmin protein HMGB1 and (iii) potential inhibition of the detoxifying enzyme glyoxalase 1 (GLO-1) considered as an important drug target for malaria. Our analysis shed light on the mechanism of action of GLR against P. falciparum.


Assuntos
Glycyrrhiza , Triterpenos , Ácido Glicirrízico/farmacologia , Extratos Vegetais/farmacologia , Plasmodium falciparum
12.
Pestic Biochem Physiol ; 168: 104624, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32711764

RESUMO

Fraxinellone (FRA) is a degraded limonoid isolated from the root bark of Dictamnus plants. The potent insecticidal activity of FRA has led to the synthesis of numerous derivatives (presented here with the structure-activity relationships) active against the oriental armyworm Mythimna separata Walker. In addition to its pesticidal activity, the natural product displays potent anti-inflammatory and immuno-modulatory effects at the origin of hepatoprotective and anticancer properties. This mini-review provides an update of the mechanism of action of FRA to highlight the recently discovered capacity of the compound to deactivate cancer-associated fibroblasts and thus to limit the immunosuppressive tumor microenvironment. The anticancer mode of action of FRA raises new ideas to better understand its primary insecticidal activity. The relationship between drug-induced cancer cell death and insect cell death is discussed. A drug interaction with the insect cytokine growth-blocking peptide (GBP), a member of the large EGF family, is proposed, supported by preliminary molecular modeling data. Altogether, the review shed light on the pharmacological properties of fraxinellone as an antitumor agent and a natural insecticide.


Assuntos
Benzofuranos , Inseticidas , Mariposas , Animais , Larva
13.
Soft Matter ; 15(36): 7211-7218, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31475271

RESUMO

Pseudomonas aeruginosa is a human opportunistic pathogen responsible for lung infections in cystic fibrosis patients. The emergence of resistant strains and its ability to form a biofilm seem to give a selective advantage to the bacterium and thus new therapeutic approaches are needed. To infect the lung, the bacterium uses several virulence factors, like LecA lectins. These proteins are involved in bacterial adhesion due to their specific interaction with carbohydrates of the host epithelial cells. The tetrameric LecA lectin specifically binds galactose residues. A new therapeutic approach is based on the development of highly affine synthetic glycoclusters able to selectively link with LecA to interfere with the natural carbohydrate-LecA interaction. In this study, we combined atomic force microscopy imaging and molecular dynamics simulations to visualize and understand the arrangements formed by LecA and five different glycoclusters. Our glycoclusters are small scaffolds characterized by a core and four branches, which terminate in a galactose residue. Depending on the nature of the core and the branches, the glycocluster-lectin interaction can be modulated and the affinity increased. We show that glycocluster-LecA arrangements highly depend on the glycocluster architecture: the core influences the rigidity of the geometry and the directionality of the branches, whereas the nature of the branch determines the compactness of the structure and the ease of binding.


Assuntos
Carboidratos/química , Lectinas/química , Microscopia de Força Atômica/métodos , Nanoestruturas/química , Aderência Bacteriana/efeitos dos fármacos , Simulação por Computador , Células Epiteliais/efeitos dos fármacos , Humanos , Modelos Moleculares , Método de Monte Carlo , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Multimerização Proteica , Pseudomonas aeruginosa , Termodinâmica
14.
Molecules ; 24(19)2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31581627

RESUMO

A set of three mannopyranoside possessing identical 1,1'-biphenyl glycosidic pharmacophore but different aglyconic atoms were synthesized using either a palladium-catalyzed Heck cross coupling reaction or a metathesis reaction between their corresponding allylic glycoside derivatives. Their X-ray structures, together with their calculated 3D structures, showed strong indicators to explain the observed relative binding abilities against E. coli FimH as measured by a improved surface plasmon resonance (SPR) method. Amongst the O-, C-, and S-linked analogs, the C-linked analog showed the best ability to become a lead candidate as antagonist against uropathogenic E. coli with a Kd of 11.45 nM.


Assuntos
Adesinas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Hexoses/farmacologia , Escherichia coli Uropatogênica/fisiologia , Aderência Bacteriana/efeitos dos fármacos , Configuração de Carboidratos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Hexoses/síntese química , Hexoses/química , Modelos Moleculares , Ressonância de Plasmônio de Superfície , Escherichia coli Uropatogênica/efeitos dos fármacos
15.
Molecules ; 23(12)2018 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-30477231

RESUMO

The Gram negative bacterium Pseudomonas aeruginosa (PA) is an opportunistic bacterium that causes severe and chronic infection of immune-depressed patients. It has the ability to form a biofilm that gives a selective advantage to the bacteria with respect to antibiotherapy and host defenses. Herein, we have focused on the tetrameric soluble lectin which is involved in bacterium adherence to host cells, biofilm formation, and cytotoxicity. It binds to l-fucose, d-mannose and glycan exposing terminal fucose or mannose. Using a competitive assay on microarray, 156 oligosaccharides and polysaccharides issued from fermentation or from the biomass were screened toward their affinity to LecB. Next, the five best ligands (Lewisa, Lewisb, Lewisx, siayl-Lewisx and 3-fucosyllactose) were derivatized with a propargyl aglycon allowing the synthesis of 25 trivalent, 25 tetravalent and 5 monovalent constructions thanks to copper catalyzed azide alkyne cycloaddition. The 55 clusters were immobilized by DNA Directed immobilization leading to the fabrication of a glycocluster microarray. Their binding to LecB was studied. Multivalency improved the binding to LecB. The binding structure relationship of the clusters is mainly influenced by the carbohydrate residues. Molecular simulations indicated that the simultaneous contact of both binding sites of monomer A and D seems to be energetically possible.


Assuntos
Lectinas/química , Oligossacarídeos/química , Pseudomonas aeruginosa/química , Sítios de Ligação , Lectinas/metabolismo , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica
16.
Chembiochem ; 18(11): 1036-1047, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28318079

RESUMO

Lectin A (LecA) from Pseudomonas aeruginosa is an established virulence factor. Glycoclusters that target LecA and are able to compete with human glycoconjugates present on epithelial cells are promising candidates to treat P. aeruginosa infection. A family of 32 glycodendrimers of generation 0 and 1 based on a bifurcated bis-galactoside motif have been designed to interact with LecA. The influences both of the central multivalent core and of the aglycon of these glycodendrimers on their affinity toward LecA have been evaluated by use of a microarray technique, both qualitatively for rapid screening of the binding properties and also quantitatively (Kd ). This has led to high-affinity LecA ligands with Kd values in the low nanomolar range (Kd =22 nm for the best one).


Assuntos
Adesinas Bacterianas/metabolismo , Desenho de Fármacos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/química , Dendrímeros/metabolismo , Células Epiteliais/química , Glicoconjugados/uso terapêutico , Humanos , Lectinas/metabolismo , Ligantes , Ligação Proteica , Fatores de Virulência/metabolismo
17.
Molecules ; 22(7)2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28671638

RESUMO

Antagonists of the Escherichia coli type-1 fimbrial adhesin FimH are recognized as attractive alternatives for antibiotic therapies and prophylaxes against acute and recurrent bacterial infections. In this study α-d-mannopyranosides O- or C-linked with an alkyl, alkene, alkyne, thioalkyl, amide, or sulfonamide were investigated to fit a hydrophobic substituent with up to two aryl groups within the tyrosine gate emerging from the mannose-binding pocket of FimH. The results were summarized into a set of structure-activity relationships to be used in FimH-targeted inhibitor design: alkene linkers gave an improved affinity and inhibitory potential, because of their relative flexibility combined with a favourable interaction with isoleucine-52 located in the middle of the tyrosine gate. Of particular interest is a C-linked mannoside, alkene-linked to an ortho-substituted biphenyl that has an affinity similar to its O-mannosidic analog but superior to its para-substituted analog. Docking of its high-resolution NMR solution structure to the FimH adhesin indicated that its ultimate, ortho-placed phenyl ring is able to interact with isoleucine-13, located in the clamp loop that undergoes conformational changes under shear force exerted on the bacteria. Molecular dynamics simulations confirmed that a subpopulation of the C-mannoside conformers is able to interact in this secondary binding site of FimH.


Assuntos
Adesinas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Manosídeos/farmacologia , Adesinas de Escherichia coli/química , Aderência Bacteriana , Sítios de Ligação , Escherichia coli/efeitos dos fármacos , Proteínas de Fímbrias/química , Manosídeos/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
18.
Chemistry ; 22(33): 11785-94, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27412649

RESUMO

Anti-infectious strategies against pathogen infections can be achieved through antiadhesive strategies by using multivalent ligands of bacterial virulence factors. LecA and LecB are lectins of Pseudomonas aeruginosa implicated in biofilm formation. A series of 27 LecA-targeting glycoclusters have been synthesized. Nine aromatic galactose aglycons were investigated with three different linker arms that connect the central mannopyranoside core. A low-nanomolar (Kd =19 nm, microarray) ligand with a tyrosine-based linker arm could be identified in a structure-activity relationship study. Molecular modeling of the glycoclusters bound to the lectin tetramer was also used to rationalize the binding properties observed.


Assuntos
Adesinas Bacterianas/química , Galactose/química , Lectinas/química , Pseudomonas aeruginosa/química , Adesinas Bacterianas/metabolismo , Galactose/metabolismo , Lectinas/metabolismo , Ligantes , Modelos Moleculares , Relação Estrutura-Atividade
19.
Org Biomol Chem ; 13(46): 11244-54, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26412676

RESUMO

Pseudomonas aeruginosa (PA) and Burkholderia ambifaria (BA) are two opportunistic Gram negative bacteria and major infectious agents involved in lung infection of cystic fibrosis patients. Both bacteria can develop resistance to conventional antibiotherapies. An alternative strategy consists of targeting virulence factors in particular lectins with high affinity ligands such as multivalent glycoclusters. LecA (PA-IL) and LecB (PA-IIL) are two tetravalent lectins from PA that recognise galactose and fucose respectively. BambL lectin from BA is trimeric with 2 binding sites per monomer and is also specific for fucose. These three lectins are potential therapeutic targets in an anti-adhesive anti-bacterial approach. Herein, we report the synthesis of 18 oligonucleotide pentofuranose-centered or mannitol-centered glycoclusters leading to tri-, penta- or decavalent clusters with different topologies. The linker arm length between the core and the carbohydrate epitope was also varied leading to 9 galactoclusters targeting LecA and 9 fucoclusters targeting both LecB and BambL. Their dissociation constants (Kd) were determined using a DNA-based carbohydrate microarray technology. The trivalent xylo-centered galactocluster and the ribo-centered fucocluster exhibited the best affinity for LecA and LecB respectively while the mannitol-centered decafucocluster displayed the best affinity to BambL. These data demonstrated that the topology and nature of linkers were the predominant factors for achieving high affinity rather than valency.


Assuntos
Adesinas Bacterianas/metabolismo , Burkholderia/metabolismo , Glicoconjugados/química , Glicoconjugados/farmacologia , Lectinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Sítios de Ligação , Burkholderia/efeitos dos fármacos , Infecções por Burkholderia/tratamento farmacológico , Infecções por Burkholderia/microbiologia , Descoberta de Drogas , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Oligonucleotídeos/química , Oligonucleotídeos/farmacologia , Ligação Proteica , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos
20.
Org Biomol Chem ; 13(31): 8433-44, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26090586

RESUMO

Pseudomonas aeruginosa (PA) is a major public health care issue due to its ability to develop antibiotic resistance mainly through adhesion and biofilm formation. Therefore, targeting the bacterial molecular arsenal involved in its adhesion and the formation of its biofilm appears as a promising tool against this pathogen. The galactose-binding LecA (or PA-IL) has been described as one of the PA virulence factors involved in these processes. Herein, the affinity of three tetravalent mannose-centered galactoclusters toward LecA was evaluated with five different bioanalytical methods: HIA, ELLA, SPR, ITC and DNA-based glycoarray. Inhibitory potential towards biofilms was then assessed for the two glycoclusters with highest affinity towards LecA (Kd values of 157 and 194 nM from ITC measurements). An inhibition of biofilm formation of 40% was found for these galactoclusters at 10 µM concentration. Applications of these macromolecules in anti-bacterial therapy are therefore possible through an anti-adhesive strategy.


Assuntos
Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Galactose/química , Galactose/farmacologia , Manose/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa