Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 56(11): 2181-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26384432

RESUMO

Rhamnogalacturonan I (RGI) is a pectic polysaccharide composed of a backbone of alternating rhamnose and galacturonic acid residues with side chains containing galactose and/or arabinose residues. The structure of these side chains and the degree of substitution of rhamnose residues are extremely variable and depend on species, organs, cell types and developmental stages. Deciphering RGI function requires extending the current set of monoclonal antibodies (mAbs) directed to this polymer. Here, we describe the generation of a new mAb that recognizes a heterogeneous subdomain of RGI. The mAb, INRA-AGI-1, was produced by immunization of mice with RGI oligosaccharides isolated from potato tubers. These oligomers consisted of highly branched RGI backbones substituted with short side chains. INRA-AGI-1 bound specifically to RGI isolated from galactan-rich cell walls and displayed no binding to other pectic domains. In order to identify its RGI-related epitope, potato RGI oligosaccharides were fractionated by anion-exchange chromatography. Antibody recognition was assessed for each chromatographic fraction. INRA-AGI-1 recognizes a linear chain of (1→4)-linked galactose and (1→5)-linked arabinose residues. By combining the use of INRA-AGI-1 with LM5, LM6 and INRA-RU1 mAbs and enzymatic pre-treatments, evidence is presented of spatial differences in RGI motif distribution within individual cell walls of potato tubers and carrot roots. These observations raise questions about the biosynthesis and assembly of pectin structural domains and their integration and remodeling in cell walls.


Assuntos
Parede Celular/química , Galactanos/imunologia , Pectinas/química , Animais , Daucus carota/química , Epitopos , Galactanos/análise , Camundongos , Raízes de Plantas/química , Raízes de Plantas/citologia , Polissacarídeos/análise , Solanum tuberosum/química
2.
Plant Biotechnol J ; 13(7): 903-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25586315

RESUMO

Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed-linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both ß-1,3 and ß-1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio-temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing the rice CslF6 MLG synthase using secondary cell wall and senescence-associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence-associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops.


Assuntos
Parede Celular/metabolismo , Glucanos/metabolismo , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/metabolismo , Envelhecimento/fisiologia , Parede Celular/química , Plantas Geneticamente Modificadas/genética
3.
Plant Cell ; 24(12): 5024-36, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23243126

RESUMO

ß-1,4-Galactans are abundant polysaccharides in plant cell walls, which are generally found as side chains of rhamnogalacturonan I. Rhamnogalacturonan I is a major component of pectin with a backbone of alternating rhamnose and galacturonic acid residues and side chains that include α-1,5-arabinans, ß-1,4-galactans, and arabinogalactans. Many enzymes are required to synthesize pectin, but few have been identified. Pectin is most abundant in primary walls of expanding cells, but ß-1,4-galactan is relatively abundant in secondary walls, especially in tension wood that forms in response to mechanical stress. We investigated enzymes in glycosyltransferase family GT92, which has three members in Arabidopsis thaliana, which we designated GALACTAN SYNTHASE1, (GALS1), GALS2 and GALS3. Loss-of-function mutants in the corresponding genes had a decreased ß-1,4-galactan content, and overexpression of GALS1 resulted in plants with 50% higher ß-1,4-galactan content. The plants did not have an obvious growth phenotype. Heterologously expressed and affinity-purified GALS1 could transfer Gal residues from UDP-Gal onto ß-1,4-galactopentaose. GALS1 specifically formed ß-1,4-galactosyl linkages and could add successive ß-1,4-galactosyl residues to the acceptor. These observations confirm the identity of the GT92 enzyme as ß-1,4-galactan synthase. The identification of this enzyme could provide an important tool for engineering plants with improved bioenergy properties.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Pectinas/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Plantas Geneticamente Modificadas
4.
Plant Physiol ; 163(3): 1107-17, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24019426

RESUMO

The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Parede Celular/genética , Mutação , Folhas de Planta/genética , Acetilação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Parede Celular/metabolismo , Teste de Complementação Genética , Glucanos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Xilanos/metabolismo
5.
Plant Cell Physiol ; 54(8): 1278-88, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23695504

RESUMO

Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Parede Celular/química , Pectinas/metabolismo , Pentosiltransferases/metabolismo , Polissacarídeos/metabolismo , Anticorpos Monoclonais , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Fenômenos Biomecânicos , Epitopos , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inflorescência/química , Inflorescência/citologia , Inflorescência/genética , Inflorescência/fisiologia , Mutação , Especificidade de Órgãos , Pentosiltransferases/genética , Epiderme Vegetal/química , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/fisiologia , Caules de Planta/química , Caules de Planta/citologia , Caules de Planta/genética , Caules de Planta/fisiologia , Plantas Geneticamente Modificadas , Polissacarídeos/imunologia , Plântula/química , Plântula/citologia , Plântula/genética , Plântula/fisiologia , Estresse Mecânico
6.
Plant Biotechnol J ; 11(3): 325-35, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23140549

RESUMO

Lignocellulosic biomass was used for thousands of years as animal feed and is now considered a great sugar source for biofuels production. It is composed mostly of secondary cell walls built with polysaccharide polymers that are embedded in lignin to reinforce the cell wall structure and maintain its integrity. Lignin is the primary material responsible for biomass recalcitrance to enzymatic hydrolysis. During plant development, deep reductions of lignin cause growth defects and often correlate with the loss of vessel integrity that adversely affects water and nutrient transport in plants. The work presented here describes a new approach to decrease lignin content while preventing vessel collapse and introduces a new strategy to boost transcription factor expression in native tissues. We used synthetic biology tools in Arabidopsis to rewire the secondary cell network by changing promoter-coding sequence associations. The result was a reduction in lignin and an increase in polysaccharide depositions in fibre cells. The promoter of a key lignin gene, C4H, was replaced by the vessel-specific promoter of transcription factor VND6. This rewired lignin biosynthesis specifically for vessel formation while disconnecting C4H expression from the fibre regulatory network. Secondly, the promoter of the IRX8 gene, secondary cell wall glycosyltransferase, was used to express a new copy of the fibre transcription factor NST1, and as the IRX8 promoter is induced by NST1, this also created an artificial positive feedback loop (APFL). The combination of strategies-lignin rewiring with APFL insertion-enhances polysaccharide deposition in stems without over-lignifying them, resulting in higher sugar yields after enzymatic hydrolysis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Parede Celular/metabolismo , Lignina/biossíntese , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Biocombustíveis , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Engenharia Genética , Feixe Vascular de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
7.
Plant Physiol ; 159(1): 56-69, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22388489

RESUMO

Mixed-linkage glucan (MLG) is a cell wall polysaccharide containing a backbone of unbranched (1,3)- and (1,4)-linked ß-glucosyl residues. Based on its occurrence in plants and chemical characteristics, MLG has primarily been associated with the regulation of cell wall expansion due to its high and transient accumulation in young, expanding tissues. The Cellulose synthase-like F (CslF) subfamily of glycosyltransferases has previously been implicated in mediating the biosynthesis of this polymer. We confirmed that the rice (Oryza sativa) CslF6 gene mediates the biosynthesis of MLG by overexpressing it in Nicotiana benthamiana. Rice cslf6 knockout mutants show a slight decrease in height and stem diameter but otherwise grew normally during vegetative development. However, cslf6 mutants display a drastic decrease in MLG content (97% reduction in coleoptiles and virtually undetectable in other tissues). Immunodetection with an anti-MLG monoclonal antibody revealed that the coleoptiles and leaves retain trace amounts of MLG only in specific cell types such as sclerenchyma fibers. These results correlate with the absence of endogenous MLG synthase activity in mutant seedlings and 4-week-old sheaths. Mutant cell walls are weaker in mature stems but not seedlings, and more brittle in both stems and seedlings, compared to wild type. Mutants also display lesion mimic phenotypes in leaves, which correlates with enhanced defense-related gene expression and enhanced disease resistance. Taken together, our results underline a weaker role of MLG in cell expansion than previously thought, and highlight a structural role for MLG in nonexpanding, mature stem tissues in rice.


Assuntos
Parede Celular/metabolismo , Glucanos/metabolismo , Glucosiltransferases/metabolismo , Oryza/enzimologia , Anticorpos Monoclonais/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Mutação , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Plântula/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Xanthomonas/imunologia , Xanthomonas/patogenicidade
8.
Plant Cell ; 22(6): 1898-908, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20530756

RESUMO

Plant cell growth is limited by the extension of cell walls, which requires both the synthesis and rearrangement of cell wall components in a controlled fashion. The target of rapamycin (TOR) pathway is a major regulator of cell growth in eukaryotes, and inhibition of this pathway by rapamycin reduces cell growth. Here, we show that in plants, the TOR pathway affects cell wall structures. LRR-extensin1 (LRX1) of Arabidopsis thaliana is an extracellular protein involved in cell wall formation in root hairs, and lrx1 mutants develop aberrant root hairs. rol5 (for repressor of lrx1) was identified as a suppressor of lrx1. The functionally similar ROL5 homolog in yeast, Ncs6p (needs Cla4 to survive 6), was previously found to affect TOR signaling. Inhibition of TOR signaling by rapamycin led to suppression of the lrx1 mutant phenotype and caused specific changes to galactan/rhamnogalacturonan-I and arabinogalactan protein components of cell walls that were similar to those observed in the rol5 mutant. The ROL5 protein accumulates in mitochondria, a target of the TOR pathway and major source of reactive oxygen species (ROS), and rol5 mutants show an altered response to ROS. This suggests that ROL5 might function as a mitochondrial component of the TOR pathway that influences the plant's response to ROS.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Parede Celular/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Clonagem Molecular , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Mutagênese , Fenótipo , Raízes de Plantas/citologia , RNA de Transferência/genética , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Sirolimo/farmacologia
9.
Planta ; 236(1): 115-28, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22270560

RESUMO

Glycosyltransferase complexes are known to be involved in plant cell wall biosynthesis, as for example in cellulose. It is not known to what extent such complexes are involved in biosynthesis of pectin as well. To address this question, work was initiated on ARAD1 (ARABINAN DEFICIENT 1) and its close homolog ARAD2 of glycosyltransferase family GT47. Using bimolecular fluorescence complementation, Förster resonance energy transfer and non-reducing gel electrophoresis, we show that ARAD1 and ARAD2 are localized in the same Golgi compartment and form homo-and heterodimeric intermolecular dimers when expressed transiently in Nicotiana benthamiana. Biochemical analysis of arad2 cell wall or fractions hereof showed no difference in the monosaccharide composition, when compared with wild type. The double mutant arad1 arad2 had an arad1 cell wall phenotype and overexpression of ARAD2 did not complement the arad1 phenotype, indicating that ARAD1 and ARAD2 are not redundant enzymes. To investigate the cell wall structure of the mutants in detail, immunohistochemical analyses were carried out on arad1, arad2 and arad1 arad2 using the arabinan-specific monoclonal antibody LM13. In roots, the labeling pattern of arad2 was distinct from both that of wild type, arad1 and arad1 arad2. Likewise, in epidermal cell walls of inflorescence stems, LM13 binding differed between arad2 and WILD TYPE, arad1 or arad1 arad2. Altogether, these data show that ARAD2 is associated with arabinan biosynthesis, not redundant with ARAD1, and that the two glycosyltransferases may function in complexes held together by disulfide bridges.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Parede Celular/química , Pectinas/biossíntese , Pentosiltransferases/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Polissacarídeos/biossíntese , Sequência de Aminoácidos , Dissulfetos/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Glicosiltransferases/metabolismo , Mutação , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Nicotiana/metabolismo , Transformação Genética
10.
Plant Physiol ; 155(3): 1068-78, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21212300

RESUMO

Nearly all polysaccharides in plant cell walls are O-acetylated, including the various pectic polysaccharides and the hemicelluloses xylan, mannan, and xyloglucan. However, the enzymes involved in the polysaccharide acetylation have not been identified. While the role of polysaccharide acetylation in vivo is unclear, it is known to reduce biofuel yield from lignocellulosic biomass by the inhibition of microorganisms used for fermentation. We have analyzed four Arabidopsis (Arabidopsis thaliana) homologs of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. Loss-of-function mutants in one of the genes, designated REDUCED WALL ACETYLATION2 (RWA2), had decreased levels of acetylated cell wall polymers. Cell wall material isolated from mutant leaves and treated with alkali released about 20% lower amounts of acetic acid when compared with the wild type. The same level of acetate deficiency was found in several pectic polymers and in xyloglucan. Thus, the rwa2 mutations affect different polymers to the same extent. There were no obvious morphological or growth differences observed between the wild type and rwa2 mutants. However, both alleles of rwa2 displayed increased tolerance toward the necrotrophic fungal pathogen Botrytis cinerea.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/microbiologia , Botrytis/fisiologia , Parede Celular/metabolismo , Imunidade Inata/imunologia , Mutação/genética , Doenças das Plantas/imunologia , Acetilação , Adaptação Fisiológica , Alelos , Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , DNA Bacteriano/genética , Epitopos/imunologia , Proteínas Fúngicas/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Mutagênese Insercional/genética , Proteínas Mutantes/isolamento & purificação , Pectinas/metabolismo , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Transporte Proteico , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo , Xilanos/metabolismo
11.
Plant Sci ; 302: 110693, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33288007

RESUMO

Mannan is a class of cell wall polysaccharides widespread in the plant kingdom. Mannan structure and properties vary according to species and organ. The cell walls of cereal grains have been extensively studied due to their role in cereal processing and to their beneficial effect on human health as dietary fiber. Recently, we showed that mannan in wheat (Triticum aestivum) grain endosperm has a linear structure of ß-1,4-linked mannose residues. The aim of this work was to study the biosynthesis and function of wheat grain mannan. We showed that mannan is deposited in the endosperm early during grain development, and we identified candidate mannan biosynthetic genes expressed in the endosperm. The functional study in wheat was unsuccessful therefore our best candidate genes were expressed in heterologous systems. The endosperm-specificTaCslA12 gene expressed in Pichia pastoris and in an Arabidopsis thaliana mutant depleted in glucomannan led to the production of wheat-like linear mannan lacking glucose residues and with moderate acetylation. Therefore, this gene encodes a mannan synthase and is likely responsible for the synthesis of wheat endosperm mannan.


Assuntos
Grão Comestível/metabolismo , Endosperma/metabolismo , Genes de Plantas/genética , Mananas/biossíntese , Triticum/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Mananas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana , Triticum/metabolismo
12.
Plant J ; 59(3): 413-25, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19392693

RESUMO

Plant cell walls are constructed from a diversity of polysaccharide components. Molecular probes directed to structural elements of these polymers are required to assay polysaccharide structures in situ, and to determine polymer roles in the context of cell wall biology. Here, we report on the isolation and the characterization of three rat monoclonal antibodies that are directed to 1,5-linked arabinans and related polymers. LM13, LM16 and LM17, together with LM6, constitute a set of antibodies that can detect differing aspects of arabinan structures within cell walls. Each of these antibodies binds strongly to isolated sugar beet arabinan samples in ELISAs. Competitive-inhibition ELISAs indicate the antibodies bind differentially to arabinans with the binding of LM6 and LM17 being effectively inhibited by short oligoarabinosides. LM13 binds preferentially to longer oligoarabinosides, and its binding is highly sensitive to arabinanase action, indicating the recognition of a longer linearized arabinan epitope. In contrast, the binding of LM16 to branched arabinan and to cell walls is increased by arabinofuranosidase action. The presence of all epitopes can be differentially modulated in vitro using glycoside hydrolase family 43 and family 51 arabinofuranosidases. In addition, the LM16 epitope is sensitive to the action of beta-galactosidase. Immunofluorescence microscopy indicates that the antibodies can be used to detect epitopes in cell walls, and that the four antibodies reveal complex patterns of epitope occurrence that vary between organs and species, and relate both to the probable processing of arabinan structural elements and the differing mechanical properties of cell walls.


Assuntos
Anticorpos Monoclonais/metabolismo , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Beta vulgaris/metabolismo , Parede Celular/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Epitopos/metabolismo , Glicosídeo Hidrolases/metabolismo , Microscopia de Fluorescência , Polissacarídeos/imunologia , Ratos
13.
Carbohydr Polym ; 224: 115063, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472844

RESUMO

In wheat endosperm, mannan, is poorly documented. Nevertheless, this hemicellulosic polysaccharide might have a determinant role in wheat grain development since, in Arabidopsis thaliana, mutants with a reduced amount of mannan show an altered seed development. In order to gain knowledge about mannan in wheat, we have determined its biochemical structure in wheat endosperm where mannose content is about 0.2% (dry weight basis). We developed a method of enzymatic fingerprinting and isolated mannan-enriched fractions to decipher its fine structure. Although it is widely accepted that the class of mannan present in grass cell walls is glucomannan, our data indicate that, in wheat endosperm, this hemicellulose is only represented by short unsubstituted chains of 1,4 linked D-mannose residues and is slightly acetylated. Our study provides information regarding the interactions of mannan with other cell wall components and help to progress towards the understanding of monocot cell wall architecture and the mannan synthesis in wheat endosperm.


Assuntos
Endosperma/química , Mananas/química , Triticum/química , Parede Celular/química , Mananas/metabolismo , beta-Manosidase/metabolismo
14.
BMC Plant Biol ; 8: 60, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18498625

RESUMO

BACKGROUND: Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure. RESULTS: Using a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal antibody (designated LM15) to the XXXG structural motif of xyloglucans. The specificity of LM15 has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of occurrences in relation to the cell wall microstructure of a range of cell types. CONCLUSION: These observations support ideas that xyloglucan is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell development and cell differentiation may need to be re-considered in relation to the potential masking of cell wall epitopes by other cell wall components.


Assuntos
Parede Celular/imunologia , Epitopos/imunologia , Glucanos/imunologia , Pectinas/metabolismo , Xilanos/imunologia , Animais , Anticorpos Monoclonais , Cotilédone/citologia , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Nasturtium/citologia , Nasturtium/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Pisum sativum/citologia , Pisum sativum/metabolismo , Caules de Planta/citologia , Caules de Planta/metabolismo , Polissacarídeo-Liases/metabolismo , Ratos , Sementes/citologia , Sementes/metabolismo , Solubilidade , Tamarindus/citologia , Tamarindus/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo
15.
Front Plant Sci ; 8: 1505, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900439

RESUMO

Staining and immunodetection by light microscopy are methods widely used to investigate plant cell walls. The two techniques have been crucial to study the cell wall architecture in planta, its deconstruction by chemicals or cell wall-degrading enzymes. They have been instrumental in detecting the presence of cell types, in deciphering plant cell wall evolution and in characterizing plant mutants and transformants. The success of immunolabeling relies on how plant materials are embedded and sectioned. Agarose coating, wax and resin embedding are, respectively, associated with vibratome, microtome and ultramicrotome sectioning. Here, we have systematically carried out a comparative analysis of these three methods of sample preparation when they are applied for cell wall staining and cell wall immunomicroscopy. In order to help the plant community in understanding and selecting adequate methods of embedding and sectioning for cell wall immunodetection, we review in this article the advantages and limitations of these three methods. Moreover, we offer detailed protocols of embedding for studying plant materials through microscopy.

16.
Curr Biol ; 26(21): 2899-2906, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27720618

RESUMO

Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape [1]. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils [2], our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins. We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO2, substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Estômatos de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Desmetilação , Esterificação
17.
Front Plant Sci ; 7: 1476, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27746801

RESUMO

Cell walls are comprised of networks of entangled polymers that differ considerably between species, tissues and developmental stages. The cell walls of grasses, a family that encompasses major crops, contain specific polysaccharide structures such as xylans substituted with feruloylated arabinose residues. Ferulic acid is involved in the grass cell wall assembly by mediating linkages between xylan chains and between xylans and lignins. Ferulic acid contributes to the physical properties of cell walls, it is a hindrance to cell wall degradability (thus biomass conversion and silage digestibility) and may contribute to pest resistance. Many steps leading to the formation of grass xylans and their cross-linkages remain elusive. One explanation might originate from the fact that many studies were performed on lignified stem tissues. Pathways leading to lignins and feruloylated xylans share several steps, and lignin may impede the release and thus the quantification of ferulic acid. To overcome these difficulties, we used the pericarp of the maize B73 line as a model to study feruloylated xylan synthesis and crosslinking. Using Fourier-transform infra-red spectroscopy and biochemical analyses, we show that this tissue has a low lignin content and is composed of approximately 50% heteroxylans and approximately 5% ferulic acid. Our study shows that, to date, maize pericarp contains the highest level of ferulic acid reported in plant tissue. The detection of feruloylated xylans with a polyclonal antibody shows that the occurrence of these polysaccharides is developmentally regulated in maize grain. We used the genomic tools publicly available for the B73 line to study the expression of genes within families involved or suggested to be involved in the phenylpropanoid pathway, xylan formation, feruloylation and their oxidative crosslinking. Our analysis supports the hypothesis that the feruloylated moiety of xylans originated from feruloylCoA and is transferred by a member of the BAHD acyltransferase family. We propose candidate genes for functional characterization that could subsequently be targeted for grass crop breeding.

18.
Front Plant Sci ; 6: 628, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347754

RESUMO

The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.

19.
Methods Mol Biol ; 1072: 453-67, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24136540

RESUMO

The cytosol is the fluid portion of the cell that is not partitioned by membranes. It contains a highly diverse collection of substances and is central to many essential cellular processes ranging from signal transduction, metabolite production and transport, protein biosynthesis and degradation to stress response and defense. Despite its importance, only a few proteomic studies have been performed on the plant cytosol. This is largely due to difficulties in isolating relatively pure samples from plant material free of disrupted organelle material. In this chapter we outline methods for isolating the cytosolic fraction from Arabidopsis cell cultures and seedlings and provide guidance on assessing purity for analysis by mass spectrometry.


Assuntos
Arabidopsis/metabolismo , Citosol/metabolismo , Proteômica/métodos , Arabidopsis/citologia , Células Cultivadas , Cloroplastos/metabolismo , Protoplastos/metabolismo , Plântula/metabolismo , Frações Subcelulares/metabolismo
20.
Plant Signal Behav ; 8(2): e23143, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23299432

RESUMO

(1,3; 1,4)-ß-D-glucan, also known as mixed linkage glucan (MLG), is a polysaccharide that in flowering plants is unique to the cell walls of grasses and other related members of Poales. MLG is highly abundant in endosperm cell walls, where it is considered a storage carbohydrate. In vegetative tissues, MLG transiently accumulates in the primary cell walls of young, elongating organs. In evolutionary distant species such as Equisetum, MLG accumulates predominantly in old tissues in the stems. Similarly, we have recently shown that rice accumulates a large amount of MLG in mature stems, which prompted us to re-evaluate the hypothesis that MLG is solely related to growth in grass vegetative tissues. Here, we summarize data that confirms the presence of MLG in secondary cell walls and mature tissues in rice and other grasses. Along with these results, we discuss additional evidence indicating a broader role for MLG than previously considered.


Assuntos
Parede Celular/metabolismo , Glucanos/metabolismo , Poaceae/metabolismo , Polissacarídeos/metabolismo , Equisetum/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa