Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 14(7): 443-51, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23736681

RESUMO

ADP-ribosylation of proteins was first described in the early 1960's, and today the function and regulation of poly(ADP-ribosyl)ation (PARylation) is partially understood. By contrast, little is known about intracellular mono(ADP-ribosyl)ation (MARylation) by ADP-ribosyl transferase (ART) enzymes, such as ARTD10. Recent findings indicate that MARylation regulates signalling and transcription by modifying key components in these processes. Emerging evidence also suggests that specific macrodomain-containing proteins, including ARTD8, macroD1, macroD2 and C6orf130, which are distinct from those affecting PARylation, interact with MARylation on target proteins to 'read' and 'erase' this modification. Thus, studying macrodomain-containing proteins is key to understanding the function and regulation of MARylation.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Regulação da Expressão Gênica , Humanos , Neoplasias/metabolismo , Poli(ADP-Ribose) Polimerases/química , Estrutura Terciária de Proteína , Transdução de Sinais , Transcrição Gênica , Resposta a Proteínas não Dobradas
2.
Chem Rev ; 118(3): 1092-1136, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29172462

RESUMO

Posttranslational modifications (PTMs) regulate protein functions and interactions. ADP-ribosylation is a PTM, in which ADP-ribosyltransferases use nicotinamide adenine dinucleotide (NAD+) to modify target proteins with ADP-ribose. This modification can occur as mono- or poly-ADP-ribosylation. The latter involves the synthesis of long ADP-ribose chains that have specific properties due to the nature of the polymer. ADP-Ribosylation is reversed by hydrolases that cleave the glycosidic bonds either between ADP-ribose units or between the protein proximal ADP-ribose and a given amino acid side chain. Here we discuss the properties of the different enzymes associated with ADP-ribosylation and the consequences of this PTM on substrates. Furthermore, the different domains that interpret either mono- or poly-ADP-ribosylation and the implications for cellular processes are described.


Assuntos
ADP Ribose Transferases/metabolismo , Adenosina Difosfato Ribose/metabolismo , ADP Ribose Transferases/química , ADP-Ribosilação , Morte Celular , Dano ao DNA , Humanos , Hidrolases/química , Hidrolases/metabolismo , NAD/metabolismo , Transdução de Sinais , Especificidade por Substrato
3.
Hepatology ; 64(4): 1217-31, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27396433

RESUMO

UNLABELLED: The IκB-Kinase (IKK) complex-consisting of the catalytic subunits, IKKα and IKKß, as well as the regulatory subunit, NEMO-mediates activation of the nuclear factor κB (NF-κB) pathway, but previous studies suggested the existence of NF-κB-independent functions of IKK subunits with potential impact on liver physiology and disease. Programmed cell death is a crucial factor in the progression of liver diseases, and receptor-interacting kinases (RIPKs) exerts strategic control over multiple pathways involved in regulating novel programmed cell-death pathways and inflammation. We hypothesized that RIPKs might be unrecognized targets of the catalytic IKK-complex subunits, thereby regulating hepatocarcinogenesis and cholestasis. In this present study, mice with specific genetic inhibition of catalytic IKK activity in liver parenchymal cells (LPCs; IKKα/ß(LPC-KO) ) were intercrossed with RIPK1(LPC-KO) or RIPK3(-/-) mice to examine whether RIPK1 or RIPK3 might be downstream targets of IKKs. Moreover, we performed in vivo phospho-proteome analyses and in vitro kinase assays, mass spectrometry, and mutagenesis experiments. These analyses revealed that IKKα and IKKß-in addition to their known function in NF-κB activation-directly phosphorylate RIPK1 at distinct regions of the protein, thereby regulating cell viability. Loss of this IKKα/ß-dependent RIPK1 phosphorylation in LPCs inhibits compensatory proliferation of hepatocytes and intrahepatic biliary cells, thus impeding HCC development, but promoting biliary cell paucity and lethal cholestasis. CONCLUSIONS: IKK-complex subunits transmit a previously unrecognized signal through RIPK1, which is fundamental for the long-term consequences of chronic hepatic inflammation and might have potential implications for future pharmacological strategies against cholestatic liver disease and cancer. (Hepatology 2016;64:1217-1231).


Assuntos
Homeostase , Quinase I-kappa B/fisiologia , Neoplasias Hepáticas/etiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Ductos Biliares Intra-Hepáticos , Carcinogênese , Masculino , Camundongos , Fosforilação
4.
Cell Commun Signal ; 11(1): 5, 2013 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-23332125

RESUMO

BACKGROUND: Although ADP-ribosylation has been described five decades ago, only recently a distinction has been made between eukaryotic intracellular poly- and mono-ADP-ribosylating enzymes. Poly-ADP-ribosylation by ARTD1 (formerly PARP1) is best known for its role in DNA damage repair. Other polymer forming enzymes are ARTD2 (formerly PARP2), ARTD3 (formerly PARP3) and ARTD5/6 (formerly Tankyrase 1/2), the latter being involved in Wnt signaling and regulation of 3BP2. Thus several different functions of poly-ADP-ribosylation have been well described whereas intracellular mono-ADP-ribosylation is currently largely undefined. It is for example not known which proteins function as substrate for the different mono-ARTDs. This is partially due to lack of suitable reagents to study mono-ADP-ribosylation, which limits the current understanding of this post-translational modification. RESULTS: We have optimized a novel screening method employing protein microarrays, ProtoArrays®, applied here for the identification of substrates of ARTD10 (formerly PARP10) and ARTD8 (formerly PARP14). The results of this substrate screen were validated using in vitro ADP-ribosylation assays with recombinant proteins. Further analysis of the novel ARTD10 substrate GSK3ß revealed mono-ADP-ribosylation as a regulatory mechanism of kinase activity by non-competitive inhibition in vitro. Additionally, manipulation of the ARTD10 levels in cells accordingly influenced GSK3ß activity. Together these data provide the first evidence for a role of endogenous mono-ADP-ribosylation in intracellular signaling. CONCLUSIONS: Our findings indicate that substrates of ADP-ribosyltransferases can be identified using protein microarrays. The discovered substrates of ARTD10 and ARTD8 provide the first sets of proteins that are modified by mono-ADP-ribosyltransferases in vitro. By studying one of the ARTD10 substrates more closely, the kinase GSK3ß, we identified mono-ADP-ribosylation as a negative regulator of kinase activity.

5.
Cell Commun Signal ; 10(1): 28, 2012 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-22992334

RESUMO

BACKGROUND: ADP-ribosylation is a posttranslational modification catalyzed in cells by ADP-ribosyltransferases (ARTD or PARP enzymes). The ARTD family consists of 17 members. Some ARTDs modify their substrates by adding ADP-ribose in an iterative process, thereby synthesizing ADP-ribose polymers, the best-studied example being ARTD1/PARP1. Other ARTDs appear to mono-ADP-ribosylate their substrates and are unable to form polymers. The founding member of this latter subclass is ARTD10/PARP10, which we identified as an interaction partner of the nuclear oncoprotein MYC. Biochemically ARTD10 uses substrate-assisted catalysis to modify its substrates. Our previous studies indicated that ARTD10 may shuttle between the nuclear and cytoplasmic compartments. We have now addressed this in more detail. RESULTS: We have characterized the subcellular localization of ARTD10 using live-cell imaging techniques. ARTD10 shuttles between the cytoplasmic and nuclear compartments. When nuclear, ARTD10 can interact with MYC as measured by bimolecular fluorescence complementation. The shuttling is controlled by a Crm1-dependent nuclear export sequence and a central ARTD10 region that promotes nuclear localization. The latter lacks a classical nuclear localization sequence and does not promote full nuclear localization. Rather this non-conventional nuclear localization sequence results in an equal distribution of ARTD10 between the cytoplasmic and the nuclear compartments. ARTD10 forms discrete and dynamic bodies primarily in the cytoplasm but also in the nucleus. These contain poly-ubiquitin and co-localize in part with structures containing the poly-ubiquitin receptor p62/SQSTM1. The co-localization depends on the ubiquitin-associated domain of p62, which mediates interaction with poly-ubiquitin. CONCLUSIONS: Our findings demonstrate that ARTD10 is a highly dynamic protein. It shuttles between the nuclear and cytosolic compartments dependent on a classical nuclear export sequence and a domain that mediates nuclear uptake. Moreover ARTD10 forms discrete bodies that exchange subunits rapidly. These bodies associate at least in part with the poly-ubiquitin receptor p62. Because this protein is involved in the uptake of cargo into autophagosomes, our results suggest a link between the formation of ARTD10 bodies and autophagy. LAY Post-translational modifications refer to changes in the chemical appearance of proteins and occur, as the name implies, after proteins have been synthesized. These modifications frequently affect the behavior of proteins, including alterations in their activity or their subcellular localization. One of these modifications is the addition of ADP-ribose to a substrate from the cofactor NAD+. The enzymes responsible for this reaction are ADP-ribosyltransferases (ARTDs or previously named PARPs). Presently we know very little about the role of mono-ADP-ribosylation of proteins that occurs in cells. We identified ARTD10, a mono-ADP-ribosyltransferase, as an interaction partner of the oncoprotein MYC. In this study we have analyzed how ARTD10 moves within a cell. By using different live-cell imaging technologies that allow us to follow the position of ARTD10 molecules over time, we found that ARTD10 shuttles constantly in and out of the nucleus. In the cytosol ARTD10 forms distinct structures or bodies that themselves are moving within the cell and that exchange ARTD10 subunits rapidly. We have identified the regions within ARTD10 that are required for these movements. Moreover we defined these bodies as structures that interact with p62. This protein is known to play a role in bringing other proteins to a structure referred to as the autophagosome, which is involved in eliminating debris in cells. Thus our work suggests that ARTD10 might be involved in and is regulated by ADP-riboslyation autophagosomal processes.

6.
SLAS Discov ; 23(4): 353-362, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29316839

RESUMO

Macrodomains recognize intracellular adenosine diphosphate (ADP)-ribosylation resulting in either removal of the modification or a protein interaction event. Research into compounds that modulate macrodomain functions could make important contributions. We investigated the interactions of all seven individual macrodomains of the human poly(ADP-ribose) polymerase (PARP) family members PARP9, PARP14, and PARP15 with five mono-ADP-ribosylated (automodified) ADP-ribosyltransferase domains using an AlphaScreen assay. Several mono-ADP-ribosylation-dependent interactions were identified, and they were found to be in the micromolar affinity range using surface plasmon resonance (SPR). We then focused on the interaction between PARP14 macrodomain-2 and the mono-ADP-ribosylated PARP10 catalytic domain, and probed a ~1500-compound diverse library for inhibitors of this interaction using AlphaScreen. Initial hit compounds were verified by concentration-response experiments using AlphaScreen and SPR, and they were tested against PARP14 macrodomain-2 and -3. Two initial hit compounds and one chemical analog each were further characterized using SPR and microscale thermophoresis. In conclusion, our results reveal novel macrodomain interactions and establish protocols for identification of inhibitors of such interactions.


Assuntos
Bioensaio/métodos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , ADP Ribose Transferases/metabolismo , ADP-Ribosilação/efeitos dos fármacos , Adenosina Difosfato Ribose/metabolismo , Humanos , Pentosiltransferases
7.
Methods Mol Biol ; 1813: 41-63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30097860

RESUMO

Mono-ADP-ribosylation is a posttranslational modification, which is catalyzed in cells by certain members of the ADP-ribosyltransferase diphtheria toxin-like family (ARTD) of ADP-ribosyltransferases (aka PARP enzymes). It involves the transfer of a single residue of ADP-ribose (ADPr) from the cofactor NAD+ onto substrate proteins. Although 12 of the 17 members of the ARTD family have been defined as mono-ARTDs in in vitro assays, relatively little is known about their exact cellular functions. A major challenge is the detection of mono-ADP-ribosylated (MARylated) proteins in cells as no antibodies are available that detect exclusively MARylated proteins. As an alternative to classical antibodies, the MAR-specific binding domains macro2 and macro3 of Artd8 can be utilized alone or in combination, to demonstrate intracellular auto-modification levels of ARTD10 in cells in both co-immunoprecipitation and co-localization experiments. Here we demonstrate that different macrodomain constructs of human ARTD8 and murine Artd8, alone or in combination, exert differences with regard to their interaction with ARTD10 in cells. Precisely, while the macrodomains of murine Artd8 interacted with ARTD10 in cells in a MARylation-dependent manner, the macrodomains of human ARTD8 interacted with ARTD10 independent of its catalytic activity. Moreover, we show that a combination of macro2 and macro3 of murine Artd8 was recruited more efficiently to ARTD10 during co-localization experiments compared to the single domains. Therefore, murine Artd8 macrodomain constructs can serve as a tool to evaluate intracellular ARTD10 auto-modification levels using the described methods, while the human ARTD8 macrodomains are less suited because of ADPr-independent binding to ARTD10. Protocols for co-immunoprecipitation and co-localization experiments are described in detail.


Assuntos
Imunoprecipitação/métodos , Poli(ADP-Ribose) Polimerases/genética , Proteínas Proto-Oncogênicas/genética , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/genética , Animais , Citoplasma/genética , Humanos , Camundongos , NAD/química , NAD/genética , Poli(ADP-Ribose) Polimerases/química , Domínios Proteicos/genética , Processamento de Proteína Pós-Traducional/genética
8.
Eur J Med Chem ; 156: 93-102, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30006177

RESUMO

Human Diphtheria toxin-like ADP-ribosyltranferases (ARTD) 10 is an enzyme carrying out mono-ADP-ribosylation of a range of cellular proteins and affecting their activities. It shuttles between cytoplasm and nucleus and influences signaling events in both compartments, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and S phase DNA repair. Furthermore, overexpression of ARTD10 induces cell death. We recently reported on the discovery of a hit compound, OUL35 (compound 1), with 330 nM potency and remarkable selectivity towards ARTD10 over other enzymes in the human protein family. Here we aimed at establishing a structure-activity relationship of the OUL35 scaffold, by evaluating an array of 4-phenoxybenzamide derivatives. By exploring modifications on the linker between the aromatic rings, we identified also a 4-(benzyloxy)benzamide derivative, compound 32, which is potent (IC50 = 230 nM) and selective, and like OUL35 was able to rescue HeLa cells from ARTD10-induced cell death. Evaluation of an enlarged series of derivatives produced detailed knowledge on the structural requirements for ARTD10 inhibition and allowed the discovery of further tool compounds with submicromolar cellular potency that will help in understanding the roles of ARTD10 in biological systems.


Assuntos
ADP Ribose Transferases/antagonistas & inibidores , Benzamidas/química , Benzamidas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , Morte Celular/efeitos dos fármacos , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Relação Estrutura-Atividade
9.
Sci Rep ; 8(1): 6748, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712969

RESUMO

Macrodomains are conserved protein folds associated with ADP-ribose binding and turnover. ADP-ribosylation is a posttranslational modification catalyzed primarily by ARTD (aka PARP) enzymes in cells. ARTDs transfer either single or multiple ADP-ribose units to substrates, resulting in mono- or poly-ADP-ribosylation. TARG1/C6orf130 is a macrodomain protein that hydrolyzes mono-ADP-ribosylation and interacts with poly-ADP-ribose chains. Interactome analyses revealed that TARG1 binds strongly to ribosomes and proteins associated with rRNA processing and ribosomal assembly factors. TARG1 localized to transcriptionally active nucleoli, which occurred independently of ADP-ribose binding. TARG1 shuttled continuously between nucleoli and nucleoplasm. In response to DNA damage, which activates ARTD1/2 (PARP1/2) and promotes synthesis of poly-ADP-ribose chains, TARG1 re-localized to the nucleoplasm. This was dependent on the ability of TARG1 to bind to poly-ADP-ribose. These findings are consistent with the observed ability of TARG1 to competitively interact with RNA and PAR chains. We propose a nucleolar role of TARG1 in ribosome assembly or quality control that is stalled when TARG1 is re-located to sites of DNA damage.


Assuntos
Núcleo Celular/genética , Dano ao DNA/genética , Poli ADP Ribosilação/genética , Tioléster Hidrolases/genética , Adenosina Difosfato Ribose/genética , Adenosina Difosfato Ribose/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Poli(ADP-Ribose) Polimerase-1/genética , Poli Adenosina Difosfato Ribose/genética , Poli(ADP-Ribose) Polimerases/genética , Processamento de Proteína Pós-Traducional/genética
10.
Sci Rep ; 7: 41746, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28150709

RESUMO

Human pathogenic positive single strand RNA ((+)ssRNA) viruses, including Chikungunya virus, pose severe health problems as for many neither efficient vaccines nor therapeutic strategies exist. To interfere with propagation, viral enzymatic activities are considered potential targets. Here we addressed the function of the viral macrodomains, conserved folds of non-structural proteins of many (+)ssRNA viruses. Macrodomains are closely associated with ADP-ribose function and metabolism. ADP-ribosylation is a post-translational modification controlling various cellular processes, including DNA repair, transcription and stress response. We found that the viral macrodomains possess broad hydrolase activity towards mono-ADP-ribosylated substrates of the mono-ADP-ribosyltransferases ARTD7, ARTD8 and ARTD10 (aka PARP15, PARP14 and PARP10, respectively), reverting this post-translational modification both in vitro and in cells. In contrast, the viral macrodomains possess only weak activity towards poly-ADP-ribose chains synthesized by ARTD1 (aka PARP1). Unlike poly-ADP-ribosylglycohydrolase, which hydrolyzes poly-ADP-ribose chains to individual ADP-ribose units but cannot cleave the amino acid side chain - ADP-ribose bond, the different viral macrodomains release poly-ADP-ribose chains with distinct efficiency. Mutational and structural analyses identified key amino acids for hydrolase activity of the Chikungunya viral macrodomain. Moreover, ARTD8 and ARTD10 are induced by innate immune mechanisms, suggesting that the control of mono-ADP-ribosylation is part of a host-pathogen conflict.


Assuntos
Vírus Chikungunya/metabolismo , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Vírus de RNA/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Catálise , Vírus Chikungunya/genética , Sequência Conservada , Ativação Enzimática , Humanos , Hidrólise , Modelos Moleculares , Mutação , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas/genética , Vírus de RNA/genética , Especificidade por Substrato , Proteínas não Estruturais Virais/genética
11.
Curr Protein Pept Sci ; 17(7): 654-667, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27090904

RESUMO

ADP-ribosylation describes an ancient and highly conserved posttranslational modification (PTM) of proteins. Many cellular processes have been identified that are regulated by ADP-ribosylation, including DNA repair, gene transcription and signaling processes. Enzymes catalyzing ADP-ribosylation use NAD+ as a cofactor to transfer ADP-ribose to a substrate under release of nicotinamide. In mammals extracellular and intracellular enzymes have been described. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs) and some Sirtuins. Extracellular and intracellular ARTs belong to the cholera toxin-like (ARTC) and the diphtheria toxin-like (ARTD) subclass, respectively. ARTDs can be further subdivided depending on their ability to either generate poly-ADP-ribose chains, or to mono-ADP-ribosylate substrates. Similar to the latter, ARTCs and Sirtuins are restricted to mono-ADP-ribosylation. Recent findings have provided information about the functional consequences of ADP-ribosylation. Analogous to other PTMs, ADP-ribosylation can exert allosteric effects on enzymes, thereby controlling their catalytic activity. Moreover, this PTM can be read by multiple protein motifs and domains mediating protein-protein interactions. Typically these readers can distinguish between mono- and poly-ADP-ribosylation. Furthermore, with the description of proteins that can erase ADP-ribosylation, this posttranslational modification is fully reversible and thus provides an additional mechanism to transiently control protein functions and networks. In this review we will describe the most recent findings on motifs and domains that are related to ADP-ribosylation processes with a particular focus on readers and erasers. These new findings provide evidence for broad functional roles of ADP-ribosylation and a high diversity of mechanisms that contribute to the downstream consequences of this modification.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Difosfato de Adenosina/metabolismo , ADP Ribose Transferases/metabolismo , Adenosina Difosfato Ribose/química , Animais , Glicosilação , Humanos , Família Multigênica , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Sirtuínas/metabolismo
12.
Cell Chem Biol ; 23(10): 1251-1260, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27667561

RESUMO

Members of the human diphtheria toxin-like ADP-ribosyltransferase (ARTD or PARP) family play important roles in regulating biological activities by mediating either a mono-ADP-ribosylation (MARylation) of a substrate or a poly-ADP-ribosylation (PARylation). ARTD10/PARP10 belongs to the MARylating ARTDs (mARTDs) subfamily, and plays important roles in biological processes that range from cellular signaling, DNA repair, and cell proliferation to immune response. Despite their biological and disease relevance, no selective inhibitors for mARTDs are available. Here we describe a small-molecule ARTD10 inhibitor, OUL35, a selective and potent inhibitor for this enzyme. We characterize its selectivity profile, model its binding, and demonstrate activity in HeLa cells where OUL35 rescued cells from ARTD10 induced cell death. Using OUL35 as a cell biology tool we show that ARTD10 inhibition sensitizes the cells to the hydroxyurea-induced genotoxic stress. Our study supports the proposed role of ARTD10 in DNA-damage repair and provides a tool compound for selective inhibition of ARTD10-mediated MARylation.


Assuntos
ADP Ribose Transferases/antagonistas & inibidores , ADP Ribose Transferases/metabolismo , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Inibidores Enzimáticos/química , Células HeLa , Humanos , Modelos Moleculares , Bibliotecas de Moléculas Pequenas/química
13.
Cells ; 4(4): 569-95, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26426055

RESUMO

A key process in the regulation of protein activities and thus cellular signaling pathways is the modification of proteins by post-translational mechanisms. Knowledge about the enzymes (writers and erasers) that attach and remove post-translational modifications, the targets that are modified and the functional consequences elicited by specific modifications, is crucial for understanding cell biological processes. Moreover detailed knowledge about these mechanisms and pathways helps to elucidate the molecular causes of various diseases and in defining potential targets for therapeutic approaches. Intracellular adenosine diphosphate (ADP)-ribosylation refers to the nicotinamide adenine dinucleotide (NAD⁺)-dependent modification of proteins with ADP-ribose and is catalyzed by enzymes of the ARTD (ADP-ribosyltransferase diphtheria toxin like, also known as PARP) family as well as some members of the Sirtuin family. Poly-ADP-ribosylation is relatively well understood with inhibitors being used as anti-cancer agents. However, the majority of ARTD enzymes and the ADP-ribosylating Sirtuins are restricted to catalyzing mono-ADP-ribosylation. Although writers, readers and erasers of intracellular mono-ADP-ribosylation have been identified only recently, it is becoming more and more evident that this reversible post-translational modification is capable of modulating key intracellular processes and signaling pathways. These include signal transduction mechanisms, stress pathways associated with the endoplasmic reticulum and stress granules, and chromatin-associated processes such as transcription and DNA repair. We hypothesize that mono-ADP-ribosylation controls, through these different pathways, the development of cancer and infectious diseases.

14.
PLoS One ; 10(9): e0139095, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26407304

RESUMO

Sirtuin 2 (SIRT2) is a NAD+-dependent deacetylase that has been associated with neurodegeneration and cancer. SIRT2 is composed of a central catalytic domain, the structure of which has been solved, and N- and C-terminal extensions that are thought to control SIRT2 function. However structural information of these N- and C-terminal regions is missing. Here, we provide the first full-length molecular models of SIRT2 in the absence and presence of NAD+. We also predict the structural alterations associated with phosphorylation of SIRT2 at S331, a modification that inhibits catalytic activity. Bioinformatics tools and molecular dynamics simulations, complemented by in vitro deacetylation assays, provide a consistent picture based on which the C-terminal region of SIRT2 is suggested to function as an autoinhibitory region. This has the capacity to partially occlude the NAD+ binding pocket or stabilize the NAD+ in a non-productive state. Furthermore, our simulations suggest that the phosphorylation at S331 causes large conformational changes in the C-terminal region that enhance the autoinhibitory activity, consistent with our previous findings that phosphorylation of S331 by cyclin-dependent kinases inhibits SIRT2 catalytic activity. The molecular insight into the role of the C-terminal region in controlling SIRT2 function described in this study may be useful for future design of selective inhibitors targeting SIRT2 for therapeutic applications.


Assuntos
Sirtuína 2/metabolismo , Sítios de Ligação , Catálise , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosforilação , Conformação Proteica , Sirtuína 2/fisiologia , Sirtuína 2/ultraestrutura , Relação Estrutura-Atividade
15.
FEBS J ; 280(15): 3519-29, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23639026

RESUMO

Poly-ADP-ribosylation functions in diverse signaling pathways, such as Wnt signaling and DNA damage repair, where its role is relatively well characterized. Contrarily, mono-ADP-ribosylation by for example ARTD10/PARP10 is much less understood. Recent developments hint at the involvement of mono-ADP-ribosylation in transcriptional regulation, the unfolded protein response, DNA repair, insulin secretion and immunity. Additionally, macrodomain-containing hydrolases, MacroD1, MacroD2 and C6orf130/TARG1, have been identified that make mono-ADP-ribosylation reversible. Complicating further progress is the lack of tools such as mono-ADP-ribose-specific antibodies. The currently known functions of mono-ADP-ribosylation are summarized here, as well as the available tools such as mass spectrometry to study this modification in vitro and in cells.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Citoplasma/fisiologia , Processamento de Proteína Pós-Traducional , Dano ao DNA/fisiologia , Regulação da Expressão Gênica , Humanos , Insulina/metabolismo , Secreção de Insulina , Estresse Fisiológico/fisiologia , Transcrição Gênica
16.
Nat Commun ; 4: 1683, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23575687

RESUMO

Adenosine diphosphate-ribosylation is a post-translational modification mediated by intracellular and membrane-associated extracellular enzymes and many bacterial toxins. The intracellular enzymes modify their substrates either by poly-ADP-ribosylation, exemplified by ARTD1/PARP1, or by mono-ADP-ribosylation. The latter has been discovered only recently, and little is known about its physiological relevance. The founding member of mono-ADP-ribosyltransferases is ARTD10/PARP10. It possesses two ubiquitin-interaction motifs, a unique feature among ARTD/PARP enzymes. Here, we find that the ARTD10 ubiquitin-interaction motifs bind to K63-linked poly-ubiquitin, a modification that is essential for NF-κB signalling. We therefore studied the role of ARTD10 in this pathway. ARTD10 inhibits the activation of NF-κB and downstream target genes in response to interleukin-1ß and tumour necrosis factor-α, dependent on catalytic activity and poly-ubiquitin binding of ARTD10. Mechanistically ARTD10 interferes with poly-ubiquitination of NEMO, which interacts with and is a substrate of ARTD10. Our findings identify a novel regulator of NF-κB signalling and provide evidence for cross-talk between K63-linked poly-ubiquitination and mono-ADP-ribosylation.


Assuntos
ADP Ribose Transferases/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , ADP Ribose Transferases/química , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Expressão Gênica , Genes Reporter , Humanos , Dados de Sequência Molecular , Transporte Proteico , Homologia de Sequência de Aminoácidos , Ubiquitinação
17.
FEBS J ; 280(5): 1330-43, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23305266

RESUMO

ADP-ribosylation is a post-translational modification that regulates various physiological processes, including DNA damage repair, gene transcription and signal transduction. Intracellular ADP-ribosyltransferases (ARTDs or PARPs) modify their substrates either by poly- or mono-ADP-ribosylation. Previously we identified ARTD10 (formerly PARP10) as a mono-ADP-ribosyltransferase, and observed that exogenous ARTD10 but not ARTD10-G888W, a catalytically inactive mutant, interferes with cell proliferation. To expand on this observation, we established cell lines with inducible ARTD10 or ARTD10-G888W. Consistent with our previous findings, induction of the wild-type protein but not the mutant inhibited cell proliferation, primarily by inducing apoptosis. During apoptosis, ARTD10 itself was targeted by caspases. We mapped the major cleavage site at EIAMD406↓S, a sequence that was preferentially recognized by caspase-6. Caspase-dependent cleavage inhibited the pro-apoptotic activity of ARTD10, as ARTD10(1-406) and ARTD10(407-1025), either alone or together, were unable to induce apoptosis, despite catalytic activity of the latter. Deletion of the N-terminal RNA recognition motif in ARTD10(257-1025) also resulted in loss of pro-apoptotic activity. Thus our findings indicate that the RNA recognition motif contributes to the pro-apoptotic effect, together with the catalytic domain. We suggest that these two domains must be physically linked to stimulate apoptosis, possibly targeting ARTD10 through the RNA recognition motif to specific substrates that control cell death. Moreover, we established that knockdown of ARTD10 reduced apoptosis in response to DNA-damaging agents. Together, these findings indicate that ARTD10 is involved in the regulation of apoptosis, and that, once apoptosis is activated, ARTD10 is cleaved as part of negative feedback regulation.


Assuntos
Apoptose , Caspases/metabolismo , Dano ao DNA/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proliferação de Células , Células Cultivadas , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Monócitos/citologia , Monócitos/metabolismo , Mutagênese Sítio-Dirigida , Mutação/genética , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/genética
18.
Structure ; 21(3): 462-75, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23473667

RESUMO

ADP-ribosyltransferases (ARTs) catalyze the transfer of ADP-ribose from NAD(+) onto substrates. Some ARTs generate in an iterative process ADP-ribose polymers that serve as adaptors for distinct protein domains. Other ARTs, exemplified by ARTD10, function as mono-ADP-ribosyltransferases, but it has been unclear whether this modification occurs in cells and how it is read. We observed that ARTD10 colocalized with ARTD8 and defined its macrodomains 2 and 3 as readers of mono-ADP-ribosylation both in vitro and in cells. The crystal structures of these two ARTD8 macrodomains and isothermal titration calorimetry confirmed their interaction with ADP-ribose. These macrodomains recognized mono-ADP-ribosylated ARTD10, but not poly-ADP-ribosylated ARTD1. This distinguished them from the macrodomain of macroH2A1.1, which interacted with poly- but not mono-ADP-ribosylated substrates. Moreover, Ran, an ARTD10 substrate, was also read by ARTD8 macrodomains. This identifies readers of mono-ADP-ribosylated proteins, defines their structures, and demonstrates the presence of this modification in cells.


Assuntos
ADP Ribose Transferases/química , Adenosina Difosfato Ribose/química , Histonas/química , Proteína ran de Ligação ao GTP/química , ADP Ribose Transferases/genética , Animais , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/genética , Células HEK293 , Histonas/genética , Humanos , Isoenzimas/química , Isoenzimas/genética , Cinética , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade , Termodinâmica , Proteína ran de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa