Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Sensors (Basel) ; 24(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793866

RESUMO

In this presented study, we measured in situ the uplink duty cycles of a smartphone for 5G NR and 4G LTE for a total of six use cases covering voice, video, and data applications. The duty cycles were assessed at ten positions near a 4G and 5G base-station site in Belgium. For Twitch, VoLTE, and WhatsApp, the duty cycles ranged between 4% and 22% in time, both for 4G and 5G. For 5G NR, these duty cycles resulted in a higher UL-allotted time due to time division duplexing at the 3.7 GHz frequency band. Ping showed median duty cycles of 2% for 5G NR and 50% for 4G LTE. FTP upload and iPerf resulted in duty cycles close to 100%.

2.
Sensors (Basel) ; 23(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960475

RESUMO

Modern infrastructure heavily relies on robust concrete structures, underscoring the critical need for effective monitoring to ensure their safety and durability. This paper addresses this imperative issue by introducing an innovative automated and wireless system for continuous structural monitoring. By employing embedded electrical resistivity sensors coupled with a wireless-based data transmission mechanism, real-time data collection becomes feasible. We provide a general description of the system's architecture and its application in a pilot study covering the effects of the devices on concrete properties and data transmission. The dielectric properties of concrete specimens were investigated under natural and accelerated curing/degradation and the results were used in the final design of the antenna device. Furthermore, a pilot test comprising four reinforced concrete columns was used to investigate the range of data transmission from inside to outside of the concrete, the effects of the hardware device on the compressive strength and concrete distribution in the columns, and the data transmission quality in real time under realistic exposure conditions.

3.
Sensors (Basel) ; 22(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36146205

RESUMO

This paper describes the exploration of the combined antenna-channel model for a horse hoof. An antenna of 25 mm × 40 mm is designed in the ISM 868 MHz band. During the characterization and design of the antenna, the dynamic and harsh environment of the horse hoof is taken into account throughout every step of the procedure because it is impossible to de-embed the antenna from its environment. The antenna and channel model are verified extensively by measurements in phantom and ex vivo. The antenna is verified to be robust against changes in the morphology of the horse's hoof up to 50%. The dynamic environment was captured by considering different soil types and air, and the design was verified to be resilient against changes herein. The antenna performs well within the targeted band, with a fractional bandwidth of 8% and a gain of -2 dBi. Furthermore, a path loss model was constructed for a typical barn environment, and the antenna reaches a range of 250 m in the studied environment based on the LoRa technology. This research is important for monitoring horse health.


Assuntos
Casco e Garras , Tecnologia sem Fio , Animais , Desenho de Equipamento , Cavalos , Imagens de Fantasmas , Solo
4.
Sensors (Basel) ; 22(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35270862

RESUMO

In an increasingly wireless world, spatiotemporal monitoring of the exposure to environmental radiofrequency (RF) electromagnetic fields (EMF) is crucial to appease public uncertainty and anxiety about RF-EMF. However, although the advent of smart city infrastructures allows for dense networks of distributed sensors, the costs of accurate RF sensors remain high, and dedicated RF monitoring networks remain rare. This paper describes a comprehensive study comprising the design of a low-cost RF-EMF sensor node capable of monitoring four frequency bands used by wireless telecommunications with an unparalleled temporal resolution, its application in a small-scale distributed sensor network consisting of both fixed (on building façades) and mobile sensor nodes (on postal vans), and the subsequent analysis of over a year of data between January 2019 and May 2020, during which slightly less than 10 million samples were collected. From the fixed nodes' results, the potential errors were determined that are induced when sampling at lower speeds (e.g., one sample per 15 min) and measuring for shorter periods of time (e.g., a few weeks), as well as an adequate resolution (30 min) for diurnal and weekly temporal profiles which sufficiently preserves short-term variations. Furthermore, based on the correlation between the sensors, an adequate density of 100 sensor nodes per km2 was deduced for future networks. Finally, the mobile sensor nodes were used to identify potential RF-EMF exposure hotspots in a previously unattainable area of more than 60 km2. In summary, through the analysis of a small number of RF-EMF sensor nodes (both fixed and mobile) in an urban area, this study offers invaluable insights applicable to future designs and deployments of distributed RF-EMF sensor networks.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Cidades , Exposição Ambiental/análise , Ondas de Rádio
5.
Bioelectromagnetics ; 38(4): 295-306, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28240792

RESUMO

In the future, wireless radiofrequency (RF) telecommunications networks will provide users with gigabit-per-second data rates. Therefore, these networks are evolving toward hybrid networks, which will include commonly used macro- and microcells in combination with local ultra-high density access networks consisting of so-called attocells. The use of attocells requires a proper compliance assessment of exposure to RF electromagnetic radiation. This paper presents, for the first time, such a compliance assessment of an attocell operating at 3.5 GHz with an input power of 1 mW, based on both root-mean-squared electric field strength (Erms ) and peak 10 g-averaged specific absorption rate (SAR10g ) values. The Erms values near the attocell were determined using finite-difference time-domain (FDTD) simulations and measurements by a tri-axial probe. They were compared to the International Commission on Non-Ionizing Radiation Protection's (ICNIRP) reference levels. All measured and simulated Erms values above the attocell were below 5.9 V/m and lower than reference levels. The SAR10g values were measured in a homogeneous phantom, which resulted in an SAR10g of 9.7 mW/kg, and used FDTD simulations, which resulted in an SAR10g of 7.2 mW/kg. FDTD simulations of realistic exposure situations were executed using a heterogeneous phantom, which yielded SAR10g values lower than 2.8 mW/kg. The studied dosimetric quantities were in compliance with ICNIRP guidelines when the attocell was fed an input power <1 mW. The deployment of attocells is thus a feasible solution for providing broadband data transmission without drastically increasing personal RF exposure. Bioelectromagnetics. 38:295-306, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Redes de Comunicação de Computadores , Exposição à Radiação/análise , Ondas de Rádio , Absorção de Radiação , Humanos , Modelos Teóricos , Imagens de Fantasmas , Tecnologia sem Fio
6.
J Magn Reson Imaging ; 44(5): 1360-1367, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27043243

RESUMO

PURPOSE: To determine exposure to gradient switching fields of adults and children in a magnetic resonance imaging (MRI) scanner by evaluating internal electric fields within realistic models of adult male, adult female, and child inside transverse and longitudinal gradient coils, and to compare these results with compliance guidelines. MATERIALS AND METHODS: Patients inside x-, y-, and z-gradient coils were simulated using anatomically realistic models of adult male, adult female, and child. The induced electric fields were computed for 1 kHz sinusoidal current with a magnitude of 1 A in the gradient coils. Rheobase electric fields were then calculated and compared to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2004 and International Electrotechnical Commission (IEC) 2010 guidelines. The effect of the human body, coil type, and skin conductivity on the induced electric field was also investigated. RESULTS: The internal electric fields are within the first level controlled operating mode of the guidelines and range from 2.7V m-1 to 4.5V m-1 , except for the adult male inside the y-gradient coil (induced field reaches 5.4V m-1 ).The induced electric field is sensitive to the coil type (electric field in the skin of adult male: 4V m-1 , 4.6V m-1 , and 3.8V m-1 for x-, y-, and z-gradient coils, respectively), the human body model (electric field in the skin inside y-gradient coil: 4.6V m-1 , 4.2V m-1 , and 3V m-1 for adult male, adult female, and child, respectively), and the skin conductivity (electric field 2.35-4.29% higher for 0.1S m-1 skin conductivity compared to 0.2S m-1 ). CONCLUSION: The y-gradient coil induced the largest fields in the patients. The highest levels of internal electric fields occurred for the adult male model. J. Magn. Reson. Imaging 2016;44:1360-1367.


Assuntos
Envelhecimento/fisiologia , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Exposição à Radiação/análise , Exposição à Radiação/prevenção & controle , Imagem Corporal Total/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Simulação por Computador , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Doses de Radiação , Proteção Radiológica/métodos , Adulto Jovem
7.
Magn Reson Med ; 74(6): 1780-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25426597

RESUMO

PURPOSE: We investigated the temporal variation of the induced magnetic field due to the transverse and the longitudinal gradient coils in tungsten collimators arranged in hexagonal and pentagonal geometries with and without gaps between the collimators. METHODS: We modeled x-, y-, and z-gradient coils and different arrangements of single-photon emission computed tomography (SPECT) collimators using FEKO, a three-dimensional electromagnetic simulation tool. A time analysis approach was used to generate the pulsed magnetic field gradient. The approach was validated with measurements using a 7T MRI scanner. RESULTS: Simulations showed an induced magnetic field representing 4.66% and 0.87% of the applied gradient field (gradient strength = 500 mT/m) for longitudinal and transverse gradient coils, respectively. These values can be reduced by 75% by adding gaps between the collimators for the pentagonal arrangement, bringing the maximum induced magnetic field to less than 2% of the applied gradient for all of the gradient coils. CONCLUSION: Characterization of the maximum induced magnetic field shows that by adding gaps between the collimators for an integrated SPECT/MRI system, eddy currents can be corrected by the MRI system to avoid artifact. The numerical model was validated and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.


Assuntos
Artefatos , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Imagem Multimodal/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tungstênio/química , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Integração de Sistemas
8.
Bioelectromagnetics ; 36(7): 517-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26344699

RESUMO

The vast amount of studies on radiofrequency dosimetry deal with exposure due to mobile devices and base station antennas for cellular communication systems. This study investigates compliance of walkie-talkies to exposure guidelines established by the International Commission on Non-Ionizing Radiation Protection and the Federal Communications Committee. The generic walkie-talkie consisted of a helical antenna and a ground plane and was derived by reverse engineering of a commercial walkie-talkie. Measured and simulated values of antenna characteristics and electromagnetic near fields of the generic walkie-talkie were within 2% and 8%, respectively. We also validated normalized electromagnetic near fields of the generic walkie-talkie against a commercial device and observed a very good agreement (deviation <6%). We showed that peak localized specific absorption rate (SAR) induced in the oval flat phantom by the generic walkie-talkie is in agreement with four commercial devices if input power of the generic walkie-talkie is rescaled based on magnetic near field. Finally, we found that SAR of commercial devices is within current SAR limits for general public exposure for a worst-case duty cycle of 100%, that is, about 3 times and 6 times lower than the limit on the 1 g SAR (1.6 W/kg) and 10 g SAR (2 W/kg), respectively. But, an effective radiated power as specified by the Private Mobile Radio at 446 MHz (PMR 446) radio standard can cause localized SAR exceeding SAR limits for 1 g of tissue.


Assuntos
Ondas de Rádio , Rádio/normas , Tecnologia sem Fio/normas , Simulação por Computador , Qualidade de Produtos para o Consumidor , Desenho de Equipamento , Segurança de Equipamentos , Tecnologia sem Fio/instrumentação
9.
Bioelectromagnetics ; 36(8): 597-602, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26511787

RESUMO

For the first time, the contribution of radio-frequent radiation originating from other people's devices to total own whole-body absorption is assessed in a simulation study. Absorption in a train environment due to base station's downlink is compared with absorption due to uplink (UL) of the user's own mobile device and absorption due to the UL of 0, 1, 5, or 15 other nearby active users. In a Global System for Mobile Communications (GSM) macro cell connection scenario, UL of 15 other users can cause up to 19% of total absorption when calling yourself and up to 100% when not calling yourself. In a Universal Mobile Telecommunications System (UMTS) femtocell connection scenario, UL of 15 other users contributes to total absorption of a non-calling user for no more than 1.5%. For five other users in the train besides the considered person, median total whole-body Specific Absorption Rate is reduced by a factor of about 400000 when deploying a UMTS femtocell base station instead of relying on the GSM macrocell.


Assuntos
Absorção de Radiação , Monitoramento de Radiação , Ondas de Rádio , Meios de Transporte , Telefone Celular , Humanos
10.
Bioelectromagnetics ; 36(6): 451-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26113174

RESUMO

This paper presents a new metric to evaluate electromagnetic exposure induced by wireless cellular networks. This metric takes into account the exposure induced by base station antennas as well as exposure induced by wireless devices to evaluate average global exposure of the population in a specific geographical area. The paper first explains the concept and gives the formulation of the Exposure Index (EI). Then, the EI computation is illustrated through simple phone call scenarios (indoor office, in train) and a complete macro urban data long-term evolution scenario showing how, based on simulations, radio-planning predictions, realistic population statistics, user traffic data, and specific absorption rate calculations can be combined to assess the index. Bioelectromagnetics. 36:451-463, 2015. © 2015 Wiley Periodicals, Inc.


Assuntos
Telefone Celular/instrumentação , Redes de Comunicação de Computadores/instrumentação , Exposição Ambiental/análise , Monitoramento de Radiação/métodos , Tecnologia sem Fio/instrumentação , Adulto , Idoso , Criança , Campos Eletromagnéticos/efeitos adversos , Feminino , Humanos , Masculino
11.
Bioelectromagnetics ; 35(4): 296-308, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24523232

RESUMO

In this paper, different methods for practical numerical radio frequency exposure compliance assessments of radio base station products were investigated. Both multi-band base station antennas and antennas designed for multiple input multiple output (MIMO) transmission schemes were considered. For the multi-band case, various standardized assessment methods were evaluated in terms of resulting compliance distance with respect to the reference levels and basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Both single frequency and multiple frequency (cumulative) compliance distances were determined using numerical simulations for a mobile communication base station antenna transmitting in four frequency bands between 800 and 2600 MHz. The assessments were conducted in terms of root-mean-squared electromagnetic fields, whole-body averaged specific absorption rate (SAR) and peak 10 g averaged SAR. In general, assessments based on peak field strengths were found to be less computationally intensive, but lead to larger compliance distances than spatial averaging of electromagnetic fields used in combination with localized SAR assessments. For adult exposure, the results indicated that even shorter compliance distances were obtained by using assessments based on localized and whole-body SAR. Numerical simulations, using base station products employing MIMO transmission schemes, were performed as well and were in agreement with reference measurements. The applicability of various field combination methods for correlated exposure was investigated, and best estimate methods were proposed. Our results showed that field combining methods generally considered as conservative could be used to efficiently assess compliance boundary dimensions of single- and dual-polarized multicolumn base station antennas with only minor increases in compliance distances.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Exposição Ambiental/análise , Adulto , Humanos , Exposição Ocupacional , Monitoramento de Radiação/métodos , Ondas de Rádio/efeitos adversos
12.
Sensors (Basel) ; 15(1): 408-21, 2014 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-25551483

RESUMO

In this paper, we investigate multilayered lossy and heterogeneous media for wireless body area networks (WBAN) to develop a simple, fast and efficient analytical in-to-out body path loss (PL) model at 2.45 GHz and, thus, avoid time-consuming simulations. The PL model is an antenna-independent model and is validated with simulations in layered medium, as well as in a 3D human model using electromagnetic solvers.


Assuntos
Redes de Comunicação de Computadores , Modelos Teóricos , Especificidade de Órgãos , Tecnologia sem Fio , Adulto , Pré-Escolar , Simulação por Computador , Humanos , Modelos Anatômicos , Reprodutibilidade dos Testes , Tórax/anatomia & histologia
13.
Bioelectromagnetics ; 34(3): 240-51, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23124484

RESUMO

Assessing the whole-body absorption in a human in a realistic environment requires a statistical approach covering all possible exposure situations. This article describes the development of a statistical multi-path exposure method for heterogeneous realistic human body models. The method is applied for the 6-year-old Virtual Family boy (VFB) exposed to the GSM downlink at 950 MHz. It is shown that the whole-body SAR does not differ significantly over the different environments at an operating frequency of 950 MHz. Furthermore, the whole-body SAR in the VFB for multi-path exposure exceeds the whole-body SAR for worst-case single-incident plane wave exposure by 3.6%. Moreover, the ICNIRP reference levels are not conservative with the basic restrictions in 0.3% of the exposure samples for the VFB at the GSM downlink of 950 MHz. The homogeneous spheroid with the dielectric properties of the head suggested by the IEC underestimates the absorption compared to realistic human body models. Moreover, the variation in the whole-body SAR for realistic human body models is larger than for homogeneous spheroid models. This is mainly due to the heterogeneity of the tissues and the irregular shape of the realistic human body model compared to homogeneous spheroid human body models.


Assuntos
Campos Eletromagnéticos , Corpo Humano , Imagens de Fantasmas , Irradiação Corporal Total , Absorção , Criança , Humanos , Masculino , Modelos Teóricos , Incerteza
15.
Bioelectromagnetics ; 34(7): 549-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23754459

RESUMO

The organ-specific averaged specific absorption rate (SARosa ) in a heterogeneous human body phantom, the Virtual Family Boy, is determined for the first time in five realistic electromagnetic environments at the Global System for Mobile Communications downlink frequency of 950 MHz. We propose two methods based upon a fixed set of finite-difference time-domain (FDTD) simulations for generating cumulative distribution functions for the SARosa in a certain environment: an accurate vectorial cell-wise spline interpolation with an average error lower than 1.8%, and a faster scalar linear interpolation with a maximal average error of 14.3%. These errors are dependent on the angular steps chosen for the FDTD simulations. However, it is demonstrated that both methods provide the same shape of the cumulative distribution function for the studied organs in the considered environments. The SARosa depends on the considered organ and the environment. Two factors influencing the SARosa are investigated for the first time: conductivity over the density ratio of an organ, and the distance of the organ's center of gravity to the body's surface and exterior of the phantom. A non-linear regression with our model provides a correlation of 0.80. The SARosa due to single plane-wave exposure is also investigated; a worst-case single plane-wave exposure is determined for all studied organs and has been compared with realistic SARosa values. There is no fixed worst-case polarization for all organs, and a single plane-wave exposure condition that exceeds 91% of the SARosa values in a certain environment can always be found for the studied organs.


Assuntos
Fenômenos Eletromagnéticos , Meio Ambiente , Imagens de Fantasmas , Radiometria/instrumentação , Absorção , Criança , Gravitação , Humanos , Masculino , Especificidade de Órgãos , Reprodutibilidade dos Testes , Processos Estocásticos
16.
Bioelectromagnetics ; 34(6): 465-78, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23361516

RESUMO

In this article, compliance boundaries and allowed output powers are determined for the front, back, and side of multiple-frequency base station antennas, based on the root-mean-squared electric field, the whole-body averaged specific absorption rate (SAR), and the 10 g averaged SAR in both the limbs and the head and trunk. For this purpose, the basic restrictions and reference levels defined by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) for both the general public and occupational exposure are used. The antennas are designed for Global System for Mobile Communications around 900 MHz (GSM900), GSM1800, High Speed Packet Access (HSPA), and Long Term Evolution (LTE), and are operated with output powers at the individual frequencies up to 300 W. The compliance boundaries are estimated using finite-difference time-domain simulations with the Virtual Family Male and have been determined for three directions with respect to the antennas for 800, 900, 1800, and 2600 MHz. The reference levels are not always conservative when the radiating part of the antenna is small compared to the length of the body. Combined compliance distances, which ensure compliance with all reference levels and basic restrictions, have also been determined for each frequency. A method to determine a conservative estimation of compliance boundaries for multiple-frequency (cumulative) exposure is introduced. Using the errors on the estimated allowed powers, an uncertainty analysis is carried out for the compliance distances. Uncertainties on the compliance distances are found to be smaller than 122%.


Assuntos
Campos Eletromagnéticos , Proteção Radiológica/métodos , Telefone Celular , Complacência (Medida de Distensibilidade) , Exposição Ambiental , Humanos , Exposição Ocupacional , Incerteza
17.
Bioelectromagnetics ; 34(2): 122-32, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22926824

RESUMO

Experimentally assessing the whole-body specific absorption rate (SAR(wb) ) in a complex indoor environment is very challenging. An experimental method based on room electromagnetics theory (accounting only the line-of-sight as specular path) is validated using numerical simulations with the finite-difference time-domain method. Furthermore, the method accounts for diffuse multipath components (DMC) in the total absorption rate by considering the reverberation time of the investigated room, which describes all the losses in a complex indoor environment. The advantage of the proposed method is that it allows discarding the computational burden because it does not use any discretizations. Results show good agreement between measurement and computation at 2.8 GHz, as long as the plane wave assumption is valid, that is, at large distances from the transmitter. Relative deviations of 0.71% and 4% have been obtained for far-field scenarios, and 77.5% for the near field-scenario. The contribution of the DMC in the total absorption rate is also quantified here, which has never been investigated before. It is found that the DMC may represent an important part of the total absorption rate; its contribution may reach up to 90% for certain scenarios in an indoor environment.


Assuntos
Fenômenos Eletromagnéticos , Doses de Radiação , Irradiação Corporal Total/métodos , Absorção , Simulação por Computador , Humanos , Imagens de Fantasmas , Água
18.
Bioelectromagnetics ; 34(7): 563-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23740872

RESUMO

For the first time, a personal distributed exposimeter (PDE) for radio frequency (RF) measurements is presented. This PDE is designed based on numerical simulations and is experimentally evaluated using textile antennas and wearable electronics. A prototype of the PDE is calibrated in an anechoic chamber. Compared to conventional exposimeters, which only measure in one position on the body, an excellent isotropy of 0.5 dB (a factor of 1.1) and a 95% confidence interval of 7 dB (a factor of 5) on power densities are measured.


Assuntos
Meio Ambiente , Imagens de Fantasmas , Ondas de Rádio , Radiometria/instrumentação , Intervalos de Confiança , Humanos , Masculino
19.
Bioelectromagnetics ; 33(6): 466-75, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22271226

RESUMO

In situ radiofrequency (RF) exposure of the different RF sources is characterized in Reading, United Kingdom, and an extrapolation method to estimate worst-case long-term evolution (LTE) exposure is proposed. All electric field levels satisfy the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels with a maximal total electric field value of 4.5 V/m. The total values are dominated by frequency modulation (FM). Exposure levels for LTE of 0.2 V/m on average and 0.5 V/m maximally are obtained. Contributions of LTE to the total exposure are limited to 0.4% on average. Exposure ratios from 0.8% (LTE) to 12.5% (FM) are obtained. An extrapolation method is proposed and validated to assess the worst-case LTE exposure. For this method, the reference signal (RS) and secondary synchronization signal (S-SYNC) are measured and extrapolated to the worst-case value using an extrapolation factor. The influence of the traffic load and output power of the base station on in situ RS and S-SYNC signals are lower than 1 dB for all power and traffic load settings, showing that these signals can be used for the extrapolation method. The maximal extrapolated field value for LTE exposure equals 1.9 V/m, which is 32 times below the ICNIRP reference levels for electric fields.


Assuntos
Exposição Ambiental/análise , Saúde Pública , Ondas de Rádio/efeitos adversos , Telecomunicações , Cidades/estatística & dados numéricos , Interpretação Estatística de Dados , Exposição Ambiental/efeitos adversos , Fatores de Tempo
20.
Bioelectromagnetics ; 33(3): 274-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22252685

RESUMO

In situ electromagnetic field exposure of workers and the general public due to non-directional beacons (NDB) for air traffic control is assessed and characterized. For occupational exposure, the maximal measured electric field value is 881.6 V/m and the maximal magnetic field value is 9.1 A/m. The maximum electric fields exceed the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels at all seven NDB sites, and the magnetic fields at two of the seven NDB sites (occupational exposure). Recommendations and compliance distances for workers and the general public are provided.


Assuntos
Aviação , Exposição Ocupacional/prevenção & controle , Campos Eletromagnéticos , Exposição Ambiental/normas , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa