Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Genet Med ; 26(7): 101138, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38602181

RESUMO

PURPOSE: Evaluate long-term efficacy and safety of elamipretide during the open-label extension (OLE) of the TAZPOWER trial in individuals with Barth syndrome (BTHS). METHODS: TAZPOWER was a 28-week randomized, double-blind, and placebo-controlled trial followed by a 168-week OLE. Patients entering the OLE continued elamipretide 40 mg subcutaneous daily. OLE primary endpoints were safety and tolerability; secondary endpoints included change from baseline in the 6-minute walk test (6MWT) and BarTH Syndrome Symptom Assessment (BTHS-SA) Total Fatigue score. Muscle strength, physician- and patient-assessed outcomes, echocardiographic parameters, and biomarkers, including cardiolipin (CL) and monolysocardiolipin (MLCL), were assessed. RESULTS: Ten patients entered the OLE; 8 reached the week 168 visit. Elamipretide was well tolerated, with injection-site reactions being the most common adverse events. Significant improvements from OLE baseline on 6MWT occurred at all OLE time points (cumulative 96.1 m of improvement [week 168, P = .003]). Mean BTHS-SA Total Fatigue scores were below baseline (improved) at all OLE time points. Three-dimensional (3D) left ventricular stroke, end-diastolic, and end-systolic volumes improved, showing significant trends for improvement from baseline to week 168. MLCL/CL values showed improvement, correlating to important clinical outcomes. CONCLUSION: Elamipretide was associated with sustained long-term tolerability and efficacy, with improvements in functional assessments and cardiac function in BTHS.

2.
Am J Hum Genet ; 107(1): 164-172, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32553196

RESUMO

CNOT1 is a member of the CCR4-NOT complex, which is a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. We report on 39 individuals with heterozygous de novo CNOT1 variants, including missense, splice site, and nonsense variants, who present with a clinical spectrum of intellectual disability, motor delay, speech delay, seizures, hypotonia, and behavioral problems. To link CNOT1 dysfunction to the neurodevelopmental phenotype observed, we generated variant-specific Drosophila models, which showed learning and memory defects upon CNOT1 knockdown. Introduction of human wild-type CNOT1 was able to rescue this phenotype, whereas mutants could not or only partially, supporting our hypothesis that CNOT1 impairment results in neurodevelopmental delay. Furthermore, the genetic interaction with autism-spectrum genes, such as ASH1L, DYRK1A, MED13, and SHANK3, was impaired in our Drosophila models. Molecular characterization of CNOT1 variants revealed normal CNOT1 expression levels, with both mutant and wild-type alleles expressed at similar levels. Analysis of protein-protein interactions with other members indicated that the CCR4-NOT complex remained intact. An integrated omics approach of patient-derived genomics and transcriptomics data suggested only minimal effects on endonucleolytic nonsense-mediated mRNA decay components, suggesting that de novo CNOT1 variants are likely haploinsufficient hypomorph or neomorph, rather than dominant negative. In summary, we provide strong evidence that de novo CNOT1 variants cause neurodevelopmental delay with a wide range of additional co-morbidities. Whereas the underlying pathophysiological mechanism warrants further analysis, our data demonstrate an essential and central role of the CCR4-NOT complex in human brain development.


Assuntos
Deficiências do Desenvolvimento/genética , Expressão Gênica/genética , Transtornos do Neurodesenvolvimento/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , RNA/genética , Receptores CCR4/genética , Fatores de Transcrição/genética , Alelos , Feminino , Variação Genética/genética , Haploinsuficiência/genética , Heterozigoto , Humanos , Masculino , Malformações do Sistema Nervoso/genética , Fenótipo , Estabilidade Proteica
3.
Mol Genet Metab ; 140(3): 107676, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37549445

RESUMO

Barth Syndrome (BTHS) is a rare X-linked disorder that is caused by defects TAFAZZIN, which leads to an abnormal cardiolipin (CL) profile of the inner mitochondrial membrane and clinical features including cardiomyopathy, neutropenia and skeletal myopathy. The ratio of monolysocardiolipin (MLCL, the remodeling intermediate of cardiolipin) to remodeled CL is always abnormal in Barth Syndrome and 3-methylglutaconic acid is often elevated affected patients, however neither of these biomarkers has been shown to temporally correlate to clinical status. In this study, we measured plasma FGF21 and GDF15 levels in 16 individuals with Barth Syndrome and evaluated whether these biomarkers were correlated to the MLCL/CL ratio in patient bloodspots and clinical laboratory parameters indicative of organ involvement in Barth Syndrome including: neutrophil and monocyte counts, liver function, and cardiac function (NT-proBNP). We found that FGF21 and GDF15 were elevated in all 16 patients and that FGF21 was significantly correlated to AST, ALT GGT, percentage of neutrophils comprising total white blood cells, percent monocytes comprising total white blood cells, and NT-proBNP levels. GDF-15 was significantly positively associated with NT-proBNP. We conclude that clinical measurements of FGF21 and GDF-15 may be relevant in the monitoring multi-organ system involvement in Barth Syndrome.


Assuntos
Síndrome de Barth , Humanos , Aciltransferases , Síndrome de Barth/genética , Biomarcadores , Cardiolipinas , Fator 15 de Diferenciação de Crescimento
4.
J Neuroophthalmol ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665646

RESUMO

BACKGROUND: Establishing a molecular diagnosis of mitochondrial diseases due to pathogenic mitochondrial DNA (mtDNA) variants can be difficult because of varying levels of tissue heteroplasmy, and identifying these variants is important for clinical management. Here, we present clinical and molecular findings in 8 adult patients with classical features of mitochondrial ophthalmologic and/or muscle disease and multiple mtDNA deletions isolated to muscle. METHODS: The patients were identified via a retrospective review of patients seen in both a tertiary ophthalmology center and a genetics clinic with a clinical diagnosis of chronic progressive external ophthalmoplegia, optic nerve abnormalities, and/or mitochondrial myopathy. Age at onset of symptoms ranged from 18 to 61 years. Ocular manifestations included bilateral optic neuropathy in one patient, bilateral optic disc cupping without optic neuropathy in 2 patients, ptosis in 4 patients, and ocular motility deficits in 2 patients. Five patients had generalized weakness. RESULTS: Pathogenic variants in mtDNA were not found in the blood or buccal sample from any patient, but 7 of 8 patients had multiple mtDNA deletions identified in muscle tissue. One patient had a single mtDNA deletion identified in the muscle. Heteroplasmy was less than 15% for all of the identified deletions, with the exception of one deletion that had a heteroplasmy of 50%-60%. None of the patients were found to have a nuclear gene variant known to be associated with mitochondrial DNA maintenance. CONCLUSIONS: mtDNA deletions were identified in adult patients with ophthalmologic and/or musle abnormalities and may underlie their clinical presentations.

5.
J Biol Chem ; 297(3): 101005, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34314685

RESUMO

Barth syndrome (BTHS) is an X-linked disorder of mitochondrial phospholipid metabolism caused by pathogenic variants in TAFFAZIN, which results in abnormal cardiolipin (CL) content in the inner mitochondrial membrane. To identify unappreciated pathways of mitochondrial dysfunction in BTHS, we utilized an unbiased proteomics strategy and identified that complex I (CI) of the mitochondrial respiratory chain and the mitochondrial quality control protease presenilin-associated rhomboid-like protein (PARL) are altered in a new HEK293-based tafazzin-deficiency model. Follow-up studies confirmed decreased steady state levels of specific CI subunits and an assembly factor in the absence of tafazzin; this decrease is in part based on decreased transcription and results in reduced CI assembly and function. PARL, a rhomboid protease associated with the inner mitochondrial membrane with a role in the mitochondrial response to stress, such as mitochondrial membrane depolarization, is increased in tafazzin-deficient cells. The increased abundance of PARL correlates with augmented processing of a downstream target, phosphoglycerate mutase 5, at baseline and in response to mitochondrial depolarization. To clarify the relationship between abnormal CL content, CI levels, and increased PARL expression that occurs when tafazzin is missing, we used blue-native PAGE and gene expression analysis to determine that these defects are remediated by SS-31 and bromoenol lactone, pharmacologic agents that bind CL or inhibit CL deacylation, respectively. These findings have the potential to enhance our understanding of the cardiac pathology of BTHS, where defective mitochondrial quality control and CI dysfunction have well-recognized roles in the pathology of diverse forms of cardiac dysfunction.


Assuntos
Aciltransferases/genética , Cardiolipinas/metabolismo , Mitocôndrias/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Aciltransferases/metabolismo , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Células HEK293 , Humanos , Lipidômica , Proteômica
6.
Genet Med ; 24(1): 87-99, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906463

RESUMO

PURPOSE: The growing size of public variant repositories prompted us to test the accuracy of pathogenicity prediction of DNA variants using population data alone. METHODS: Under the a priori assumption that the ratio of the prevalence of variants in healthy population vs that in affected populations form 2 distinct distributions (pathogenic and benign), we used a Bayesian method to assign probability to a variant belonging to either distribution. RESULTS: The approach, termed Bayesian prevalence ratio (BayPR), accurately parsed 300 of 313 expertly curated CFTR variants: 284 of 296 pathogenic/likely pathogenic variants in 1 distribution and 16 of 17 benign/likely benign variants in another. BayPR produced an area under the receiver operating characteristic curve of 0.99 for 103 functionally confirmed missense CFTR variants, which is equal to or exceeds 10 commonly used algorithms (area under the receiver operating characteristic curve range = 0.54-0.99). Application of BayPR to expertly curated variants in 8 genes associated with 7 Mendelian conditions led to the assignment of a disease-causing probability of ≥80% to 1350 of 1374 (98.3%) pathogenic/likely pathogenic variants and of ≤20% to 22 of 23 (95.7%) benign/likely benign variants. CONCLUSION: Irrespective of the variant type or functional effect, the BayPR approach provides probabilities of pathogenicity for DNA variants responsible for Mendelian disorders using only the variant counts in affected and unaffected population samples.


Assuntos
Algoritmos , Mutação de Sentido Incorreto , Teorema de Bayes , Humanos , Curva ROC
7.
J Inherit Metab Dis ; 45(1): 7-16, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34355402

RESUMO

Barth Syndrome is a rare X-linked disorder caused by pathogenic variants in the gene TAFAZZIN, which encodes for an enzyme involved in the remodeling of cardiolipin, a phospholipid primarily localized to the inner mitochondrial membrane. Barth Syndrome is characterized by cardiomyopathy, skeletal myopathy, neutropenia, and growth abnormalities, among other features. In this review, we will discuss the clinical presentation and natural history of Barth Syndrome, review key features of this disease, and introduce less common clinical associations. Recognition and understanding of the natural history of Barth Syndrome are important for ongoing patient management and developing endpoints for the demonstration of efficacy of new and emerging therapies.


Assuntos
Síndrome de Barth/metabolismo , Síndrome de Barth/patologia , Aciltransferases/genética , Síndrome de Barth/genética , Síndrome de Barth/terapia , Cardiolipinas/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Humanos , Membranas Mitocondriais/metabolismo , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mutação , Neutropenia/metabolismo , Neutropenia/patologia
8.
J Inherit Metab Dis ; 45(1): 17-28, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34713454

RESUMO

Barth Syndrome is an X-linked disorder of mitochondrial cardiolipin metabolism caused by pathogenic variants in TAFAZZIN with pleiotropic effects including cardiomyopathy, neutropenia, growth delay, and skeletal myopathy. Management requires a multidisciplinary approach to the organ-specific manifestations including specialists from cardiology, hematology, nutrition, physical therapy, genetics, and metabolism. Currently, treatment is centered on management of specific clinical features, and is not targeted toward remediating the underlying biochemical defect. However, two clinical trials have been recently undertaken which target the mitochondrial pathology of this disease: a study to examine the effects of elamipretide, a cardiolipin targeted agent, and a study to examine the effects of bezafibrate, a peroxisome proliferator-activated receptor (PPAR) agonist. Treatments to directly target the defective TAFAZZIN pathway are under development, including enzyme and gene therapies.


Assuntos
Síndrome de Barth/terapia , Bezafibrato/uso terapêutico , Oligopeptídeos/uso terapêutico , Aciltransferases/genética , Animais , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/terapia , Ensaios Clínicos como Assunto , Terapia Enzimática , Terapia Genética , Humanos , Camundongos , Doenças Musculares/metabolismo , Doenças Musculares/terapia , Neutropenia/metabolismo , Neutropenia/terapia , Receptores Ativados por Proliferador de Peroxissomo/agonistas
9.
J Inherit Metab Dis ; 45(1): 29-37, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382226

RESUMO

Barth syndrome is an X-linked disorder characterized by cardiomyopathy, skeletal myopathy, and neutropenia, caused by deleterious variants in TAFAZZIN. This gene encodes a phospholipid-lysophospholipid transacylase that is required for the remodeling of the mitochondrial phospholipid cardiolipin (CL). Biochemically, individuals with Barth syndrome have a deficiency of mature CL and accumulation of the remodeling intermediate monolysocardiolipin (MLCL). Diagnosis typically relies on mass spectrometric measurement of CL and MLCL in cells or tissues, and we previously described a method in blood spot that uses a specific MLCL/CL ratio as diagnostic biomarker. Here, we describe the evolution of our blood spot assay that is based on the implementation of reversed phase-UHPLC separation followed by full scan high resolution mass spectrometry. In addition to the MLCL/CL ratio, our improved method also generates a complete CL spectrum allowing the interrogation of the CL fatty acid composition, which considerably enhances the diagnostic reliability. This addition negates the need for a confirmatory test in lymphocytes thereby providing a shorter turn-around-time while achieving a more certain test result. As one of the few laboratories that offer this assay, we also evaluated the diagnostic yield and performance from 2006 to 2021 encompassing the use of both the original and improved assay. In this period, we performed 796 diagnostic analyses of which 117 (15%) were characteristic of Barth syndrome. In total, we diagnosed 93 unique individuals with Barth syndrome, including three females, which together amounts to about 40% of all reported individuals with Barth syndrome in the world.


Assuntos
Síndrome de Barth/diagnóstico , Cardiolipinas/sangue , Linfócitos/metabolismo , Lisofosfolipídeos/sangue , Adolescente , Adulto , Síndrome de Barth/sangue , Criança , Pré-Escolar , Feminino , Humanos , Modelos Lineares , Linfócitos/química , Masculino , Espectrometria de Massas , Reprodutibilidade dos Testes , Adulto Jovem
10.
Proc Natl Acad Sci U S A ; 116(18): 9103-9114, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30988181

RESUMO

The mammalian CNS is capable of tolerating chronic hypoxia, but cell type-specific responses to this stress have not been systematically characterized. In the Norrin KO (NdpKO ) mouse, a model of familial exudative vitreoretinopathy (FEVR), developmental hypovascularization of the retina produces chronic hypoxia of inner nuclear-layer (INL) neurons and Muller glia. We used single-cell RNA sequencing, untargeted metabolomics, and metabolite labeling from 13C-glucose to compare WT and NdpKO retinas. In NdpKO retinas, we observe gene expression responses consistent with hypoxia in Muller glia and retinal neurons, and we find a metabolic shift that combines reduced flux through the TCA cycle with increased synthesis of serine, glycine, and glutathione. We also used single-cell RNA sequencing to compare the responses of individual cell types in NdpKO retinas with those in the hypoxic cerebral cortex of mice that were housed for 1 week in a reduced oxygen environment (7.5% oxygen). In the hypoxic cerebral cortex, glial transcriptome responses most closely resemble the response of Muller glia in the NdpKO retina. In both retina and brain, vascular endothelial cells activate a previously dormant tip cell gene expression program, which likely underlies the adaptive neoangiogenic response to chronic hypoxia. These analyses of retina and brain transcriptomes at single-cell resolution reveal both shared and cell type-specific changes in gene expression in response to chronic hypoxia, implying both shared and distinct cell type-specific physiologic responses.


Assuntos
Hipóxia/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Vitreorretinopatias Exsudativas Familiares/genética , Vitreorretinopatias Exsudativas Familiares/fisiopatologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Retina/metabolismo , Retina/fisiologia , Neurônios Retinianos/metabolismo , Vasos Retinianos/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
11.
Genet Med ; 23(3): 471-478, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077895

RESUMO

PURPOSE: To evaluate effectiveness of elamipretide in Barth syndrome (BTHS), a genetic condition of defects in TAZ, which causes abnormal cardiolipin on the inner mitochondrial membrane. METHODS: We performed a randomized, double-blind, placebo-controlled crossover trial followed by an open-label extension in BTHS to test the effect of elamipretide, a mitochondrial tetrapeptide that interacts with cardiolipin. In part 1, 12 subjects were randomized to 40 mg per day of elamipretide or placebo for 12 weeks, followed by a 4-week washout and then 12 weeks on the opposite arm. Ten subjects continued on the open-label extension (part 2) of 40 mg per day of elamipretide, with eight subjects reaching 36 weeks. Primary endpoints were improvement on the 6-minute walk test (6MWT) and improvement on a BTHS Symptom Assessment (BTHS-SA) scale. RESULTS: In part 1 neither primary endpoint was met. At 36 weeks in part 2, there were significant improvements in 6MWT (+95.9 m, p = 0.024) and BTHS-SA (-2.1 points, p = 0.031). There were also significant improvements in secondary endpoints including knee extensor strength, patient global impression of symptoms, and some cardiac parameters. CONCLUSION: In this interventional clinical trial in BTHS, daily administration of elamipretide led to improvement in BTHS symptoms.


Assuntos
Síndrome de Barth , Cardiolipinas , Humanos , Mitocôndrias , Oligopeptídeos
12.
Mol Genet Metab ; 134(1-2): 37-42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34176718

RESUMO

Elevated citrulline and C5-OH levels are reported as part of the newborn screening of core and secondary disorders on the Recommended Uniform Screening Panel (RUSP). Additionally, some state laboratory newborn screening programs report low citrulline levels, which may be observed in proximal urea cycle disorders. We report six patients who were found on newborn screening to have low citrulline and/or elevated C5-OH levels in whom confirmatory testing showed the combination of these two abnormal analytes. Mitochondrial sequencing revealed known pathogenic variants in MT-ATP6 at high heteroplasmy levels in all cases. MT-ATP6 at these heteroplasmy levels is associated with Leigh syndrome, a progressive neurodegenerative disease. Patients were treated with supplemental citrulline and, in some cases, mitochondrial cofactor therapy. These six patients have not experienced metabolic crises or developmental regression, and early diagnosis and management may help prevent the neurological sequelae of Leigh syndrome. The affected mothers and siblings are asymptomatic or paucisymptomatic (e.g. intellectual disability, depression, migraines, obsessive-compulsive disorder, and poor balance) despite high heteroplasmy or apparent homoplasmy of the familial variant, thus expanding the clinical spectrum seen in pathogenic variants of MT-ATP6. Confirmatory plasma amino acid analysis and acylcarnitine profiling should be ordered in a patient with either low citrulline and/or elevated C5-OH, as this combination appears specific for pathogenic variants in MT-ATP6.


Assuntos
Testes Genéticos/métodos , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Triagem Neonatal/métodos , Carnitina/sangue , Carnitina/química , Citrulina/sangue , DNA Mitocondrial/genética , Feminino , Humanos , Recém-Nascido , Masculino , Estudos Prospectivos
13.
Am J Med Genet A ; 185(11): 3350-3358, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34165242

RESUMO

From Sir Archibald Garrod's initial description of the tetrad of albinism, alkaptonuria, cystinuria, and pentosuria to today, the field of medicine dedicated to inborn errors of metabolism has evolved from disease identification and mechanistic discovery to the development of therapies designed to subvert biochemical defects. In this review, we highlight major milestones in the treatment and diagnosis of inborn errors of metabolism, starting with dietary therapy for phenylketonuria in the 1950s and 1960s, and ending with current approaches in genetic manipulation.


Assuntos
Albinismo/terapia , Alcaptonúria/terapia , Cistinúria/terapia , Erros Inatos do Metabolismo/terapia , Albinismo/genética , Albinismo/metabolismo , Albinismo/patologia , Alcaptonúria/genética , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/patologia , Erros Inatos do Metabolismo dos Carboidratos/terapia , Cistinúria/genética , Cistinúria/metabolismo , Cistinúria/patologia , Humanos , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Fenilcetonúrias/genética , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Fenilcetonúrias/terapia , Desidrogenase do Álcool de Açúcar/deficiência , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , Xilulose/genética , Xilulose/metabolismo
14.
Circulation ; 140(14): 1205-1216, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31769940

RESUMO

Mitochondria have emerged as a central factor in the pathogenesis and progression of heart failure, and other cardiovascular diseases, as well, but no therapies are available to treat mitochondrial dysfunction. The National Heart, Lung, and Blood Institute convened a group of leading experts in heart failure, cardiovascular diseases, and mitochondria research in August 2018. These experts reviewed the current state of science and identified key gaps and opportunities in basic, translational, and clinical research focusing on the potential of mitochondria-based therapeutic strategies in heart failure. The workshop provided short- and long-term recommendations for moving the field toward clinical strategies for the prevention and treatment of heart failure and cardiovascular diseases by using mitochondria-based approaches.


Assuntos
Sistema Cardiovascular , Educação/métodos , Insuficiência Cardíaca/terapia , Mitocôndrias/fisiologia , National Heart, Lung, and Blood Institute (U.S.) , Relatório de Pesquisa , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Sistema Cardiovascular/patologia , Educação/tendências , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Humanos , National Heart, Lung, and Blood Institute (U.S.)/tendências , Relatório de Pesquisa/tendências , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/tendências , Estados Unidos/epidemiologia
15.
Genet Med ; 22(5): 878-888, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31949314

RESUMO

PURPOSE: Determination of genotypic/phenotypic features of GATAD2B-associated neurodevelopmental disorder (GAND). METHODS: Fifty GAND subjects were evaluated to determine consistent genotypic/phenotypic features. Immunoprecipitation assays utilizing in vitro transcription-translation products were used to evaluate GATAD2B missense variants' ability to interact with binding partners within the nucleosome remodeling and deacetylase (NuRD) complex. RESULTS: Subjects had clinical findings that included macrocephaly, hypotonia, intellectual disability, neonatal feeding issues, polyhydramnios, apraxia of speech, epilepsy, and bicuspid aortic valves. Forty-one novelGATAD2B variants were identified with multiple variant types (nonsense, truncating frameshift, splice-site variants, deletions, and missense). Seven subjects were identified with missense variants that localized within two conserved region domains (CR1 or CR2) of the GATAD2B protein. Immunoprecipitation assays revealed several of these missense variants disrupted GATAD2B interactions with its NuRD complex binding partners. CONCLUSIONS: A consistent GAND phenotype was caused by a range of genetic variants in GATAD2B that include loss-of-function and missense subtypes. Missense variants were present in conserved region domains that disrupted assembly of NuRD complex proteins. GAND's clinical phenotype had substantial clinical overlap with other disorders associated with the NuRD complex that involve CHD3 and CHD4, with clinical features of hypotonia, intellectual disability, cardiac defects, childhood apraxia of speech, and macrocephaly.


Assuntos
Deficiência Intelectual , Megalencefalia , Transtornos do Neurodesenvolvimento , Criança , Feminino , Fatores de Transcrição GATA/genética , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Nucleossomos , Fenótipo , Gravidez , Proteínas Repressoras
17.
Am J Med Genet A ; 182(1): 38-52, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31782611

RESUMO

White-Sutton syndrome (WHSUS) is a recently-identified genetic disorder resulting from de novo heterozygous pathogenic variants in POGZ. Thus far, over 50 individuals have been reported worldwide, however phenotypic characterization and data regarding the natural history are still incomplete. Here we report the clinical features of 22 individuals with 21 unique loss of function POGZ variants. We observed a broad spectrum of intellectual disability and/or developmental delay with or without autism, and speech delay in all individuals. Other common problems included ocular abnormalities, hearing loss and gait abnormalities. A validated sleep disordered breathing questionnaire identified symptoms of obstructive sleep apnea in 4/12 (33%) individuals. A higher-than-expected proportion of cases also had gastrointestinal phenotypes, both functional and anatomical, as well as genitourinary anomalies. In line with previous publications, we observed an increased body mass index (BMI) z-score compared to the general population (mean 0.59, median 0.9; p 0.0253). Common facial features included microcephaly, broad forehead, midface hypoplasia, triangular mouth, broad nasal root and flat nasal bridge. Analysis of the Baylor Genetics clinical laboratory database revealed that POGZ variants were implicated in approximately 0.14% of cases who underwent clinical exome sequencing for neurological indications with or without involvement of other body systems. This study describes a greater allelic series and expands the phenotypic spectrum of this new syndromic form of intellectual disability and autism.


Assuntos
Transtorno Autístico/genética , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Transposases/genética , Adolescente , Adulto , Transtorno Autístico/patologia , Criança , Pré-Escolar , Exoma/genética , Feminino , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/patologia , Transtornos do Desenvolvimento da Linguagem/patologia , Masculino , Microcefalia/genética , Microcefalia/patologia , Pessoa de Meia-Idade , Mutação/genética , Fenótipo , Sequenciamento do Exoma , Adulto Jovem
18.
Proc Natl Acad Sci U S A ; 114(1): 125-130, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27999180

RESUMO

Kabuki syndrome is a Mendelian intellectual disability syndrome caused by mutations in either of two genes (KMT2D and KDM6A) involved in chromatin accessibility. We previously showed that an agent that promotes chromatin opening, the histone deacetylase inhibitor (HDACi) AR-42, ameliorates the deficiency of adult neurogenesis in the granule cell layer of the dentate gyrus and rescues hippocampal memory defects in a mouse model of Kabuki syndrome (Kmt2d+/ßGeo). Unlike a drug, a dietary intervention could be quickly transitioned to the clinic. Therefore, we have explored whether treatment with a ketogenic diet could lead to a similar rescue through increased amounts of beta-hydroxybutyrate, an endogenous HDACi. Here, we report that a ketogenic diet in Kmt2d+/ßGeo mice modulates H3ac and H3K4me3 in the granule cell layer, with concomitant rescue of both the neurogenesis defect and hippocampal memory abnormalities seen in Kmt2d+/ßGeo mice; similar effects on neurogenesis were observed on exogenous administration of beta-hydroxybutyrate. These data suggest that dietary modulation of epigenetic modifications through elevation of beta-hydroxybutyrate may provide a feasible strategy to treat the intellectual disability seen in Kabuki syndrome and related disorders.


Assuntos
Anormalidades Múltiplas/dietoterapia , Dieta Cetogênica/métodos , Face/anormalidades , Doenças Hematológicas/dietoterapia , Hipocampo/metabolismo , Histonas/biossíntese , Deficiência Intelectual/dietoterapia , Neurogênese/fisiologia , Doenças Vestibulares/dietoterapia , Ácido 3-Hidroxibutírico/metabolismo , Anormalidades Múltiplas/genética , Animais , Modelos Animais de Doenças , Doenças Hematológicas/genética , Hipocampo/citologia , Histona Desmetilases/genética , Histona-Lisina N-Metiltransferase/genética , Deficiência Intelectual/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína de Leucina Linfoide-Mieloide/genética , Neurogênese/genética , Doenças Vestibulares/genética
19.
Am J Med Genet A ; 179(5): 870-874, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30941876

RESUMO

BCORL1, a transcriptional corepressor, is involved in negative gene regulation through associations with several protein complexes including Class II histone deacetylases (HDACs). Acquired somatic mutations in BCORL1 have been implicated in the pathogenesis of several malignancies, but germline mutations of BCORL1 have not been associated with a specific genetic syndrome. We report five individuals from three pedigrees with phenotypes including intellectual disability, behavioral difficulties, and dysmorphic features who were found via whole exome sequencing to have variants in BCORL1. In silico analysis of these variants strongly suggests pathogenicity. We propose that hemizygous pathogenic variants in BCORL1 underlie a newly identified X-linked epigenetic syndrome.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Genes Ligados ao Cromossomo X , Variação Genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Comportamento Problema , Proteínas Repressoras/genética , Pré-Escolar , Fácies , Genótipo , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Mutação , Linhagem , Fenótipo
20.
Am J Med Genet A ; 179(8): 1556-1564, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31099476

RESUMO

Biallelic pathogenic variants in AARS2, a gene encoding the mitochondrial alanyl-tRNA synthetase, result in a spectrum of findings ranging from infantile cardiomyopathy to adult-onset progressive leukoencephalopathy. In this article, we present three unrelated individuals with novel compound heterozygous pathogenic AARS2 variants underlying diverse clinical presentations. Patient 1 is a 51-year-old man with adult-onset progressive cognitive, psychiatric, and motor decline and leukodystrophy. Patient 2 is a 34-year-old man with childhood-onset progressive tremor followed by the development of polyneuropathy, ataxia, and mild cognitive and psychiatric decline without leukodystrophy on imaging. Patient 3 is a 57-year-old woman with childhood-onset tremor and nystagmus which preceded dystonia, chorea, ataxia, depression, and cognitive decline marked by cerebellar atrophy and white matter disease. These cases expand the clinical heterogeneity of AARS2-related disorders, given that the first and third case represent some of the oldest known survivors of this disease, the second is adult-onset AARS2-related neurological decline without leukodystrophy, and the third is biallelic AARS2-related disorder involving a partial gene deletion.


Assuntos
Alanina-tRNA Ligase/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Fenótipo , Adulto , Alelos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética/métodos , Testes Genéticos , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Exame Neurológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa