RESUMO
We demonstrate an optical transmitter consisting of a limiting SiGe BiCMOS driver co-designed and co-packaged with a silicon photonic segmented traveling-wave Mach-Zehnder modulator (MZM). The MZM is split into two traveling-wave segments to increase the bandwidth and to allow a 2-bit DAC functionality. Two limiting driver channels are used to drive these segments, allowing both NRZ and PAM4 signal generation in the optical domain. The voltage swing as well as the peaking of the driver output are tunable, hence the PAM4 signal levels can be tuned and possible bandwidth limitations of the MZM segments can be partially alleviated. Generation of 50 Gbaud and 53 Gbaud PAM4 yields a TDECQ of 2.8 and 3.8 dB with a power efficiency of 3.9 and 3.6 pJ/bit, respectively; this is the best reported efficiency for co-packaged silicon transmitters for short-reach datacenter interconnects at these data rates. With this work, we show the potential of limiting drivers and segmented traveling-wave modulators in 400G capable short-reach optical interconnects.
RESUMO
A BiCMOS chip-based real-time intensity modulation/direct detection spatial division multiplexing system is experimentally demonstrated for both optical interconnects. 100 Gbps/λ/core electrical duobinary (EDB) transmission over 1 km 7-core multicore fiber (MCF) is carried out, achieving KP4 forward error correction (FEC) limit (BER < 2E-4). Using optical dispersion compensation, 7 × 100 Gbps/λ/core transmission of both non-return-to-zero (NRZ) and EDB signals over 10 km MCF transmission is achieved with BER lower than 7% overhead hard-decision FEC limit (BER < 3.8E-3). The integrated low complexity transceiver IC and analog signal processing approach make such a system highly attractive for the high-speed intra-datacenter interconnects.