Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 33(3): 670-679, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28001408

RESUMO

We introduce a newly designed catechol-based compound and its application for the preparation of homogeneous monomolecular layers as well as for robust assemblies on various substrates. The precisely defined cyclic catechol material (CyCat) was prepared from ortho-dimethoxybenzene in a phenolic resin-like synthesis and subsequent deprotection, featuring molecules with up to 32 catechol units. The CyCat's chemical structure was carefully assessed via matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF), proton nuclear magnetic resonance (1H NMR), diffusion ordered spectroscopy (2D DOSY) and high resolution electrospray ionization mass spectrometry (ESI MS) experiments. The formation of colloidal aggregates of the CyCat material in alkaline solution was followed by dynamic light scattering (DLS) and further verified by dropcasting CyCat from solution on highly oriented pyrolytic graphite (HOPG), which was examined by Kelvin probe force microscopy (KPFM). The adsorption behavior of the CyCat to form monomolecular layers was investigated in real time by surface plasmon resonance (SPR). Formation of these thin CyCat layers (1.6-2.1 nm) on Au, SiO2 and TiO2 substrates was corroborated by spectroscopic ellipsometry (SE) and X-ray photoelectron spectroscopy (XPS). The prepared coating perfectly reflects the surface structure of the underlying substrate and does not exhibit CyCat colloidal aggregates as verified by atomic force microscopy (AFM). The functional nature of the prepared catechol monolayers was evidenced by reaction with 4-bromophenethylamine and bis(3-aminopropyl)-terminated poly(ethylene oxide) (PEO). Multilayer assemblies were prepared by a simple procedure of iterative immersion in solutions of CyCat and a multifunctional amine on Au, SiO2 and TiO2 substrates forming thicker coatings (up to 12 nm). Postmodification with small organic molecules was performed to covalently attach trifluoroacetyl, tetrazole and 2-bromo-2-methylpropanoyl moieties to the amine groups of the multilayer assembly coating. Furthermore, the versatility of the novel multilayer coating was underpinned by "grafting-to" of phenacyl sulfide-terminated PEO and "grafting-from" of poly(methyl methacrylate) via surface-initiated atom transfer radical polymerization (ATRP).

2.
Nanotechnology ; 28(3): 035703, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27934780

RESUMO

Localization of atomic defect-induced electronic transport through a single graphene layer is calculated using a full-valence electronic structure description as a function of the defect density and taking into account the atomic-scale deformations of the layer. The elementary electronic destructive interferences leading to Anderson localization are analyzed. The low-voltage current intensity decreases with increasing length and defect density, with a calculated localization length ζ = 3.5 nm for a defect density of 5%. The difference from the experimental defect density of 0.5% required for an oxide surface-supported graphene to obtain the same ζ is discussed, pointing out how interactions of the graphene supporting surface and surface chemical modifications also control electronic transport localization.

3.
Nanotechnology ; 27(39): 395303, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27573286

RESUMO

The electrical characterization of single-polymer chains on a surface is an important step towards novel molecular device development. The main challenge is the lack of appropriate atomically flat insulating substrates for fabricating single-polymer chains. Here, using atomic force microscopy, we demonstrate that the (0001) surface of an insulating hexagonal boron nitride (h-BN) substrate leads to a flat-lying self-assembled monolayer of diacetylene compounds. The subsequent heating or ultraviolet irradiation can initiate an on-surface polymerization process leading to the formation of long polydiacetylene chains. The frequency of photo-polymerization occurrence on h-BN(0001) is two orders of magnitude higher than that on graphite(0001). This is explained by the enhanced lifetime of the molecular excited state, because relaxation via the h-BN is suppressed due to a large band gap. We also demonstrate that on-surface polymerization on h-BN(0001) is possible even after the lithography process, which opens up the possibility of further electrical investigations.

4.
Phys Chem Chem Phys ; 18(46): 31600-31605, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27834980

RESUMO

Single crystal sapphire and diamond surfaces are used as planar, atomically flat insulating surfaces, for the deposition of the diacetylene compound 10,12-nonacosadiynoic acid. The surface assembly is compared with results on hexagonal boron nitride (h-BN), highly oriented pyrolytic graphite (HOPG) and MoS2 surfaces. A perfectly flat-lying monolayer of 10,12-nonacosadiynoic acid self-assembles on h-BN like on HOPG and MoS2. On sapphire and oxidized diamond surfaces, we observed assemblies of standing-up molecular layers. Surface assembly is driven by surface electrostatic dipoles. Surface polarity is partially controlled using a hydrogenated diamond surface or totally screened by the deposition of a graphene layer on the sapphire surface. This results in a perfectly flat and organized SAM on graphene, which is ready for on-surface polymerization of long and isolated molecular wires under ambient conditions.

5.
Langmuir ; 29(23): 7111-7, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23679138

RESUMO

Constant electrical current in the range of -1 to -200 pA is applied by an atomic force microscope (AFM) in contact mode regime to induce and study local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD) thin films. The NCD films are deposited on silicon in 70 nm thickness and with 60% relative sp(2) phase content. Charging current is monitored by conductive AFM. Electric potential contrast induced by the current is evaluated by Kelvin force microscopy (KFM). KFM shows well-defined, homogeneous, and reproducible microscopic patterns that are not influenced by inherent tip-surface junction fluctuations during the charging process. The charged patterns are persistent for at least 72 h due to charge trapping inside the NCD film. The current-induced charging also clearly reveals field-induced detrapping at current amplitudes >-50 pA and tip instability at >-150 pA, both of which limit the achievable potential contrast. In addition, we show that the field also determines the range of electronic states that can trap the charge. We present a model and discuss implications for control of the nanoscale charging process.


Assuntos
Diamante/química , Nanopartículas/química , Nanotecnologia , Microscopia de Força Atômica , Eletricidade Estática
6.
Polymers (Basel) ; 10(2)2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30966242

RESUMO

Long poly-diacetylene chains are excellent candidates for planar, on-surface synthesized molecular electronic wires. Since hexagonal-Boron Nitride (h-BN) was identified as the best available atomically flat insulator for the deposition of poly-diacetylene precursors, we demonstrate the polymerization patterns and rate on it under UV-light irradiation, with subsequent polymer identification by atomic force microscopy. The results on h-BN indicate self-sensitization which yields blocks comprised of several polymers, unlike on the well-studied graphite/diacetylene system, where the polymers are always isolated. In addition, the photo-polymerization proceeds at least 170 times faster on h-BN, where it also results in longer polymers. Both effects are explained by the h-BN bandgap, which is larger than the diacetylene electronic excitation energy, thus allowing the transfer of excess energy absorbed by polymerized wires to adjacent monomers, triggering their polymerization. This work sets the stage for conductance measurements of single molecular poly-diacetylene wires on h-BN.

7.
Chem Commun (Camb) ; 49(77): 8623-5, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23945828

RESUMO

Cyclopentadienyl end-capped poly(3-hexylthiophene) was employed to fabricate conductive surface tethered polymer brushes via a facile route based on cyclopentadiene-maleimide Diels-Alder ligation. The efficient nature of the Diels-Alder ligation was further combined with a biomimetic polydopamine-assisted functionalization of surfaces, making it an access route of choice for P3HT surface immobilization.


Assuntos
Ciclopentanos/química , Maleimidas/química , Polímeros/química , Tiofenos/química , Reação de Cicloadição , Indóis/química , Propriedades de Superfície
8.
Nanoscale Res Lett ; 6(1): 145, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21711664

RESUMO

Conductive tips in atomic force microscopy (AFM) can be used to localize field-enhanced metal-induced solid-phase crystallization (FE-MISPC) of amorphous silicon (a-Si:H) at room temperature down to nanoscale dimensions. In this article, the authors show that such local modifications can be used to selectively induce further localized growth of silicon nanocrystals. First, a-Si:H films by plasma-enhanced chemical vapor deposition on nickel/glass substrates are prepared. After the FE-MISPC process, yielding both conductive and non-conductive nano-pits in the films, the second silicon layer at the boundary condition of amorphous and microcrystalline growth is deposited. Comparing AFM morphology and current-sensing AFM data on the first and second layers, it is observed that the second deposition changes the morphology and increases the local conductivity of FE-MISPC-induced pits by up to an order of magnitude irrespective of their prior conductivity. This is attributed to the silicon nanocrystals (<100 nm) that tend to nucleate and grow inside the pits. This is also supported by micro-Raman spectroscopy.

9.
Nanoscale Res Lett ; 6(1): 144, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21711679

RESUMO

We apply atomic force microscope for local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD) thin films deposited on silicon, to induce electrostatically driven self-assembly of colloidal alumina nanoparticles into micro-patterns. Considering possible capacitive, sp2 phase and spatial uniformity factors to charging, we employ films with sub-100 nm thickness and about 60% relative sp2 phase content, probe the spatial material uniformity by Raman and electron microscopy, and repeat experiments at various positions. We demonstrate that electrostatic potential contrast on the NCD films varies between 0.1 and 1.2 V and that the contrast of more than ±1 V (as detected by Kelvin force microscopy) is able to induce self-assembly of the nanoparticles via coulombic and polarization forces. This opens prospects for applications of diamond and its unique set of properties in self-assembly of nano-devices and nano-systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa