Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cerebellum ; 22(3): 447-467, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35648332

RESUMO

Anoctamin 10 (ANO10), also known as TMEM16K, is a transmembrane protein and member of the anoctamin family characterized by functional duality. Anoctamins manifest ion channel and phospholipid scrambling activities and are involved in many physiological processes such as cell division, migration, apoptosis, cell signalling, and developmental processes. Several diseases, including neurological, muscle, blood disorders, and cancer, have been associated with the anoctamin family proteins. ANO10, which is the main focus of the present review, exhibits both scrambling and chloride channel activity; calcium availability is necessary for protein activation in either case. Additional processes implicating ANO10 include endosomal sorting, spindle assembly, and calcium signalling. Dysregulation of calcium signalling in Purkinje cells due to ANO10 defects is proposed as the main mechanism leading to spinocerebellar ataxia autosomal recessive type 10 (SCAR10), a rare, slowly progressive spinocerebellar ataxia. Regulation of the endolysosomal pathway is an additional ANO10 function linked to SCAR10 aetiology. Further functional investigation is essential to unravel the ANO10 mechanism of action and involvement in disease development.


Assuntos
Cálcio , Ataxias Espinocerebelares , Humanos , Cálcio/metabolismo , Anoctaminas , Proteínas de Membrana
2.
J Cell Sci ; 133(16)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694168

RESUMO

The structurally and functionally complex endoplasmic reticulum (ER) hosts critical processes including lipid synthesis. Here, we focus on the functional characterization of transmembrane protein TMEM147, and report that it localizes at the ER and nuclear envelope in HeLa cells. Silencing of TMEM147 drastically reduces the level of lamin B receptor (LBR) at the inner nuclear membrane and results in mistargeting of LBR to the ER. LBR possesses a modular structure and corresponding bifunctionality, acting in heterochromatin organization via its N-terminus and in cholesterol biosynthesis via its sterol-reductase C-terminal domain. We show that TMEM147 physically interacts with LBR, and that the C-terminus of LBR is essential for their functional interaction. We find that TMEM147 also physically interacts with the key sterol reductase DHCR7, which is involved in cholesterol biosynthesis. Similar to what was seen for LBR, TMEM147 downregulation results in a sharp decline of DHCR protein levels and co-ordinate transcriptional decreases of LBR and DHCR7 expression. Consistent with this, lipidomic analysis upon TMEM147 silencing identified changes in cellular cholesterol levels, cholesteryl ester levels and profile, and in cellular cholesterol uptake, raising the possibility that TMEM147 is an important new regulator of cholesterol homeostasis in cells.This article has an associated First Person interview with the first author of the paper.


Assuntos
Membrana Nuclear , Receptores Citoplasmáticos e Nucleares , Colesterol , Células HeLa , Homeostase , Humanos , Proteínas de Membrana , Proteínas do Tecido Nervoso , Membrana Nuclear/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptor de Lamina B
3.
J Med Genet ; 57(3): 178-186, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31511340

RESUMO

BACKGROUND: Distal hereditary motor neuronopathies (dHMN) are a group of genetic disorders characterised by motor neuron degeneration leading to muscle weakness that are caused by mutations in various genes. HMNJ is a distinct form of the disease that has been identified in patients from the Jerash region of Jordan. Our aim was to identify and characterise the genetic cause of HMNJ. METHODS: We used whole exome and Sanger sequencing to identify a novel genetic variant associated with the disease and then carried out immunoblot, immunofluorescence and apoptosis assays to extract functional data and clarify the effect of this novel SIGMAR1 mutation. Physical and neurological examinations were performed on selected patients and unaffected individuals in order to re-evaluate clinical status of patients 20 years after the initial description of HMNJ as well as to evaluate new and previously undescribed patients with HMNJ. RESULTS: A homozygous missense mutation (c.500A>T, N167I) in exon 4 of the SIGMAR1 gene was identified, cosegregating with HMNJ in the 27 patients from 7 previously described consanguineous families and 3 newly ascertained patients. The mutant SIGMAR1 exhibits reduced expression, altered subcellular distribution and elevates cell death when expressed. CONCLUSION: In conclusion, the homozygous SIGMAR1 c.500A>T mutation causes dHMN of the Jerash type, possibly due to a significant drop of protein levels. This finding is in agreement with other SIGMAR1 mutations that have been associated with autosomal recessive dHMN with pyramidal signs; thus, our findings further support that SIGMAR1 be added to the dHMN genes diagnostic panel.


Assuntos
Predisposição Genética para Doença , Atrofia Muscular Espinal/genética , Receptores sigma/genética , Adolescente , Adulto , Criança , Exoma/genética , Feminino , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia Muscular Espinal/fisiopatologia , Mutação de Sentido Incorreto/genética , Linhagem , Fenótipo , Adulto Jovem , Receptor Sigma-1
4.
Cell Mol Life Sci ; 73(1): 163-84, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26153462

RESUMO

Katanins are microtubule (MT)-severing AAA proteins with high phylogenetic conservation throughout the eukaryotes. They have been functionally implicated in processes requiring MT remodeling, such as spindle assembly in mitosis and meiosis, assembly/disassembly of flagella and cilia and neuronal morphogenesis. Here, we uncover a novel family of katanin-like 2 proteins (KATNAL2) in mouse, consisting of five alternatively spliced isoforms encoded by the Katnal2 genomic locus. We further demonstrate that in vivo these isoforms are able to interact with themselves, with each other and moreover directly and independently with MRP/MinD-type P-loop NTPases Nubp1 and Nubp2, which are integral components of centrioles, negative regulators of ciliogenesis and implicated in centriole duplication in mammalian cells. We find KATNAL2 localized on interphase MTs, centrioles, mitotic spindle, midbody and the axoneme and basal body of sensory cilia in cultured murine cells. shRNAi of Katnal2 results in inefficient cytokinesis and severe phenotypes of enlarged cells and nuclei, increased numbers of centrioles and the manifestation of aberrant multipolar mitotic spindles, mitotic defects, chromosome bridges, multinuclearity, increased MT acetylation and an altered cell cycle pattern. Silencing or stable overexpression of KATNAL2 isoforms drastically reduces ciliogenesis. In conclusion, KATNAL2s are multitasking enzymes involved in the same cell type in critically important processes affecting cytokinesis, MT dynamics, and ciliogenesis and are also implicated in cell cycle progression.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Microtúbulos/metabolismo , Mapas de Interação de Proteínas , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/genética , Animais , Ciclo Celular , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Cílios/metabolismo , Cílios/ultraestrutura , Citocinese , Proteínas de Ligação ao GTP/análise , Inativação Gênica , Interfase , Peptídeos e Proteínas de Sinalização Intracelular , Katanina , Camundongos , Microtúbulos/ultraestrutura , Células NIH 3T3 , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Regulação para Cima
5.
Front Neurol ; 14: 1241195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799281

RESUMO

Introduction: Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by pathogenic variants in the SMN1 gene. The majority of SMA patients harbor a homozygous deletion of SMN1 exon 7 (95%). Heterozygosity for a conventional variant and a deletion is rare (5%) and not easily detected, due to the highly homologous SMN2 gene interference. SMN2 mainly produces a truncated non-functional protein (SMN-d7) instead of the full-length functional (SMN-FL). We hereby report a novel SMN1 splicing variant in an infant with severe SMA. Methods: MLPA was used for SMN1/2 exon dosage determination. Sanger sequencing approaches and long-range PCR were employed to search for an SMN1 variant. Conventional and improved Real-time PCR assays were developed for the qualitative and quantitative SMN1/2 RNA analysis. Results: The novel SMN1 splice-site variant c.835-8_835-5delinsG, was identified in compound heterozygosity with SMN1 exons 7/8 deletion. RNA studies revealed complete absence of SMN1 exon 7, thus confirming a disruptive effect of the variant on SMN1 splicing. No expression of the functional SMN1-FL transcript, remarkable expression of the SMN1-d7 and increased levels of the SMN2-FL/SMN2-d7 transcripts were observed. Discussion: We verified the occurrence of a non-deletion SMN1 variant and supported its pathogenicity, thus expanding the SMN1 variants spectrum. We discuss the updated SMA genetic findings in the Cypriot population, highlighting an increased percentage of intragenic variants compared to other populations.

6.
Plants (Basel) ; 12(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37111938

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative condition, primarily affecting seniors. Despite the significant time and money spent over the past few decades, no therapy has been developed yet. In recent years, the research has focused on ameliorating the cytotoxic amyloid beta (Aß) peptide aggregates and the increased elevated oxidative stress, two interconnected main AD hallmarks. Medicinal plants constitute a large pool for identifying bioactive compounds or mixtures with a therapeutic effect. Sideritis scardica (SS) has been previously characterized as neuroprotective toward AD. We investigated this ability of SS by generating eight distinct solvent fractions, which were chemically characterized and assessed for their antioxidant and neuroprotective potential. The majority of the fractions were rich in phenolics and flavonoids, and all except one showed significant antioxidant activity. Additionally, four SS extracts partly rescued the viability in Aß25-35-treated SH-SY5Y human neuroblastoma cells, with the initial aqueous extract being the most potent and demonstrating similar activity in retinoic-acid-differentiated cells as well. These extracts were rich in neuroprotective substances, such as apigenin, myricetin-3-galactoside, and ellagic acid. Our findings indicate that specific SS mixtures can benefit the pharmaceutical industry to develop herbal drugs and functional food products that may alleviate AD.

7.
Plants (Basel) ; 12(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37765357

RESUMO

An increasingly common ailment in elderly persons is Alzheimer's disease (AD), a neurodegenerative illness. Present treatment is restricted to alleviating symptoms; hence, there is a requirement to develop an effective approach to AD treatment. Salvia fruticosa (SF) is a medicinal plant with a documented neuroprotective potential. To identify extracts of increased neuroprotectivity, we partitioned the methanolic extract of SF aerial parts from Greece into several fractions, by employing solvents of different polarities. The fractions were chemically identified and evaluated for their antioxidancy and anti-neurotoxic potential against amyloid beta peptides 25-35 (Aß25-35). Carnosol and carnosic acid were among the prominent compounds, while all partitions showed significant antioxidant capacity, with the diethyl ether and ethyl acetate partitions being the most potent. These, along with the aqueous and the butanolic fractions, demonstrated statistically significant anti-neurotoxic potential. Thus, our findings further validate the neuroprotective potential of SF and support its ethnopharmacological usage as an antioxidant. The particular properties found define SF as a promising source for obtaining extracts or bioactive compounds, possibly beneficial for generating AD-related functional foods or medications. Finally, our results encourage plant extract partitioning for acquiring fractions of enhanced biological properties.

8.
Front Genet ; 12: 812640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096021

RESUMO

The SPG7 gene encodes the paraplegin protein, an inner mitochondrial membrane-localized protease. It was initially linked to pure and complicated hereditary spastic paraplegia with cerebellar atrophy, and now represents a frequent cause of undiagnosed cerebellar ataxia and spastic ataxia. We hereby report the molecular characterization and the clinical features of a large Cypriot family with five affected individuals presenting with spastic ataxia in an autosomal recessive transmission mode, due to a novel SPG7 homozygous missense variant. Detailed clinical histories of the patients were obtained, followed by neurological and neurophysiological examinations. Whole exome sequencing (WES) of the proband, in silico gene panel analysis, variant filtering and family segregation analysis of the candidate variants with Sanger sequencing were performed. RNA and protein expression as well as in vitro protein localization studies and mitochondria morphology evaluation were carried out towards functional characterization of the identified variant. The patients presented with typical spastic ataxia features while some intrafamilial phenotypic variation was noted. WES analysis revealed a novel homozygous missense variant in the SPG7 gene (c.1763C > T, p. Thr588Met), characterized as pathogenic by more than 20 in silico prediction tools. Functional studies showed that the variant does not affect neither the RNA or protein expression, nor the protein localization. However, aberrant mitochondrial morphology has been observed thus indicating mitochondrial dysfunction and further demonstrating the pathogenicity of the identified variant. Our study is the first report of an SPG7 pathogenic variant in the Cypriot population and broadens the spectrum of SPG7 pathogenic variants.

9.
Artigo em Inglês | MEDLINE | ID: mdl-33505483

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease, affecting the elderly at a high incidence. AD is of unknown etiology and currently, no cure is available. Present medication is restricted to treating symptoms; thus, a need exists for the development of effective remedies. Medicinal plants constitute a large pool, from which active compounds of great pharmaceutical potential can be derived. Various Salvia spp. are considered as neuroprotective, and here, the ability of Salvia fruticosa (SF) to protect against toxic effects induced in an AD cell model was partly assessed. Two of AD's characteristic hallmarks are the presence of elevated oxidative stress levels and the cytotoxic aggregation of amyloid beta (Aß) peptides. Thus, we obtained SF extracts in three different solvents of increasing polarity, consecutively, to evaluate (a) their antioxidant capacity with the employment of the free radical scavenging assay (DPPH•), of the ferric reducing ability of plasma assay (FRAP), and of the cellular reactive oxygen species assay (DCFDA) and (b) their neuroprotective properties against Aß 25-35-induced cell death with the use of an MTT assay. All three SF extracts showed a considerable antioxidant capacity, with the methanol (SFM) extract being the strongest. The results of the total phenolic and flavonoid contents (TPC and TFC) of the extracts and of the FRAP and the DCFDA assays showed a similar pattern. In addition, and most importantly, the dichloromethane (SFD) and the petroleum ether (SFP) extracts had an effect on Aß toxicity, exhibiting a significant neuroprotective potential. To our knowledge, this is the first report of SF extracts demonstrating neuroprotective potential against Aß toxicity. In combination with their antioxidant capacity, SF extracts may be beneficial in combating AD and other neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa