Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Mol Cancer ; 22(1): 129, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563568

RESUMO

BACKGROUND: This Phase 1 study evaluates the intra- and peritumoral administration by convection enhanced delivery (CED) of human recombinant Bone Morphogenetic Protein 4 (hrBMP4) - an inhibitory regulator of cancer stem cells (CSCs) - in recurrent glioblastoma. METHODS: In a 3 + 3 dose escalation design, over four to six days, fifteen recurrent glioblastoma patients received, by CED, one of five doses of hrBMP4 ranging from 0·5 to 18 mg. Patients were followed by periodic physical, neurological, blood testing, magnetic resonance imaging (MRI) and quality of life evaluations. The primary objective of this first-in-human study was to determine the safety, dose-limiting toxicities (DLT) and maximum tolerated dose (MTD) of hrBMP4. Secondary objectives were to assess potential efficacy and systemic exposure to hrBMP4 upon intracerebral infusion. RESULTS: Intra- and peritumoral infusion of hrBMP4 was safe and well-tolerated. We observed no serious adverse events related to this drug. Neither MTD nor DLT were reached. Three patients had increased hrBMP4 serum levels at the end of infusion, which normalized within 4 weeks, without sign of toxicity. One patient showed partial response and two patients a complete (local) tumor response, which was maintained until the most recent follow-up, 57 and 30 months post-hrBMP4. Tumor growth was inhibited in areas permeated by hrBMP4. CONCLUSION: Local delivery of hrBMP4 in and around recurring glioblastoma is safe and well-tolerated. Three patients responded to the treatment. A complete response and long-term survival occurred in two of them. This warrants further clinical studies on this novel treatment targeting glioblastoma CSCs. TRIAL REGISTRATION: ClinicaTrials.gov identifier: NCT02869243.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Qualidade de Vida , Proteína Morfogenética Óssea 4/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Encefálicas/patologia , Dose Máxima Tolerável
2.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34351399

RESUMO

Hundreds of human proteins were found to establish transient interactions with rather degenerated consensus DNA sequences or motifs. Identifying these motifs and the genomic sites where interactions occur represent one of the most challenging research goals in modern molecular biology and bioinformatics. The last twenty years witnessed an explosion of computational tools designed to perform this task, whose performance has been last compared fifteen years ago. Here, we survey sixteen of them, benchmark their ability to identify known motifs nested in twenty-nine simulated sequence datasets, and finally report their strengths, weaknesses, and complementarity.


Assuntos
Benchmarking , DNA/química , Biologia Computacional/métodos , Humanos , Análise de Sequência de DNA/métodos
3.
Nucleic Acids Res ; 49(D1): D1282-D1288, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33300029

RESUMO

Numerous lines of evidence have shown that the interaction between the nuclear and mitochondrial genomes ensures the efficient functioning of the OXPHOS complexes, with substantial implications in bioenergetics, adaptation, and disease. Their interaction is a fascinating and complex trait of the eukaryotic cell that MitImpact explores with its third major release. MitImpact expands its collection of genomic, clinical, and functional annotations of all non-synonymous substitutions of the human mitochondrial genome with new information on putative Compensated Pathogenic Deviations and co-varying amino acid sites of the Respiratory Chain subunits. It further provides evidence of energetic and structural residue compensation by techniques of molecular dynamics simulation. MitImpact is freely accessible at http://mitimpact.css-mendel.it.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/química , Subunidades Proteicas/química , Software , Substituição de Aminoácidos , Animais , Cetáceos , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Ontologia Genética , Humanos , Internet , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Anotação de Sequência Molecular , Mutação , Fosforilação Oxidativa , Primatas , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Roedores
4.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362211

RESUMO

Translation of cell therapies into clinical practice requires the adoption of robust production protocols in order to optimize and standardize the manufacture and cryopreservation of cells, in compliance with good manufacturing practice regulations. Between 2012 and 2020, we conducted two phase I clinical trials (EudraCT 2009-014484-39, EudraCT 2015-004855-37) on amyotrophic lateral sclerosis secondary progressive multiple sclerosis patients, respectively, treating them with human neural stem cells. Our production process of a hNSC-based medicinal product is the first to use brain tissue samples extracted from fetuses that died in spontaneous abortion or miscarriage. It consists of selection, isolation and expansion of hNSCs and ends with the final pharmaceutical formulation tailored to a specific patient, in compliance with the approved clinical protocol. The cells used in these clinical trials were analyzed in order to confirm their microbiological safety; each batch was also tested to assess identity, potency and safety through morphological and functional assays. Preclinical, clinical and in vitro nonclinical data have proved that our cells are safe and stable, and that the production process can provide a high level of reproducibility of the cultures. Here, we describe the quality control strategy for the characterization of the hNSCs used in the above-mentioned clinical trials.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Neurais , Humanos , Reprodutibilidade dos Testes , Criopreservação , Esclerose Lateral Amiotrófica/tratamento farmacológico , Controle de Qualidade
5.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525510

RESUMO

Huntington disease (HD) is a devastating and presently untreatable neurodegenerative disease characterized by progressively disabling motor and mental manifestations. The sigma-1 receptor (σ1R) is a protein expressed in the central nervous system, whose 3D structure has been recently determined by X-ray crystallography and whose agonists have been shown to have neuroprotective activity in neurodegenerative diseases. To identify therapeutic agents against HD, we have implemented a drug repositioning strategy consisting of: (i) Prediction of the ability of the FDA-approved drugs publicly available through the ZINC database to interact with σ1R by virtual screening, followed by computational docking and visual examination of the 20 highest scoring drugs; and (ii) Assessment of the ability of the six drugs selected by computational analyses to directly bind purified σ1R in vitro by Surface Plasmon Resonance and improve the growth of fibroblasts obtained from HD patients, which is significantly impaired with respect to control cells. All six of the selected drugs proved able to directly bind purified σ1R in vitro and improve the growth of HD cells from both or one HD patient. These results support the validity of the drug repositioning procedure implemented herein for the identification of new therapeutic tools against HD.


Assuntos
Fibroblastos/citologia , Doença de Huntington/metabolismo , Preparações Farmacêuticas/química , Receptores sigma/metabolismo , Adulto , Proliferação de Células , Células Cultivadas , Simulação por Computador , Bases de Dados de Produtos Farmacêuticos , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Doença de Huntington/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Receptores sigma/química , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Receptor Sigma-1
6.
Brief Bioinform ; 19(5): 853-862, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28334084

RESUMO

Molecular dynamics (MD) simulation allows one to predict the time evolution of a system of interacting particles. It is widely used in physics, chemistry and biology to address specific questions about the structural properties and dynamical mechanisms of model systems. MD earned a great success in genome research, as it proved to be beneficial in sorting pathogenic from neutral genomic mutations. Considering their computational requirements, simulations are commonly performed on HPC computing devices, which are generally expensive and hard to administer. However, variables like the software tool used for modeling and simulation or the size of the molecule under investigation might make one hardware type or configuration more advantageous than another or even make the commodity hardware definitely suitable for MD studies. This work aims to shed lights on this aspect.


Assuntos
Genômica/estatística & dados numéricos , Simulação de Dinâmica Molecular/estatística & dados numéricos , Algoritmos , Biologia Computacional/métodos , Bases de Dados Genéticas/estatística & dados numéricos , Humanos , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Proteínas/química , Proteínas/genética , Software , Design de Software
7.
Int J Mol Sci ; 21(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182809

RESUMO

Recent cutting-edge human genetics technology has allowed us to identify copy number variations (CNVs) and has provided new insights for understanding causative mechanisms of human diseases. A growing number of studies show that CNVs could be associated with physiological mechanisms linked to evolutionary trigger, as well as to the pathogenesis of various diseases, including cancer, autoimmune disease and mental disorders such as autism spectrum disorders, schizophrenia, intellectual disabilities or attention-deficit/hyperactivity disorder. Their incomplete penetrance and variable expressivity make diagnosis difficult and hinder comprehension of the mechanistic bases of these disorders. Additional elements such as co-presence of other CNVs, genomic background and environmental factors are involved in determining the final phenotype associated with a CNV. Genetically engineered animal models are helpful tools for understanding the behavioral consequences of CNVs. However, the genetic background and the biology of these animal model systems have sometimes led to confusing results. New cellular models obtained through somatic cellular reprogramming technology that produce induced pluripotent stem cells (iPSCs) from human subjects are being used to explore the mechanisms involved in the pathogenic consequences of CNVs. Considering the vast quantity of CNVs found in the human genome, we intend to focus on reviewing the current literature on the use of iPSCs carrying CNVs on chromosome 15, highlighting advantages and limits of this system with respect to mouse model systems.


Assuntos
Sistema Nervoso Central/fisiologia , Cromossomos Humanos Par 15/genética , Variações do Número de Cópias de DNA/genética , Doenças Genéticas Inatas/genética , Instabilidade Genômica/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Reprogramação Celular/genética , Humanos
8.
Nat Chem Biol ; 13(9): 951-955, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28671681

RESUMO

Extracellular vesicles (EVs) are membrane particles involved in the exchange of a broad range of bioactive molecules between cells and the microenvironment. Although it has been shown that cells can traffic metabolic enzymes via EVs, much remains to be elucidated with regard to their intrinsic metabolic activity. Accordingly, herein we assessed the ability of neural stem/progenitor cell (NSC)-derived EVs to consume and produce metabolites. Our metabolomics and functional analyses both revealed that EVs harbor L-asparaginase activity, catalyzed by the enzyme asparaginase-like protein 1 (Asrgl1). Critically, we show that Asrgl1 activity is selective for asparagine and is devoid of glutaminase activity. We found that mouse and human NSC EVs traffic Asrgl1. Our results demonstrate, for the first time, that NSC EVs function as independent metabolic units that are able to modify the concentrations of critical nutrients, with the potential to affect the physiology of their microenvironment.


Assuntos
Asparaginase/metabolismo , Vesículas Extracelulares/metabolismo , Modelos Biológicos
9.
Int J Mol Sci ; 20(11)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195749

RESUMO

Growing evidence highlights a tight connection between circadian rhythms, molecular clockworks, and mitochondrial function. In particular, mitochondrial quality control and bioenergetics have been proven to undergo circadian oscillations driven by core clock genes. Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by a selective loss of dopaminergic neurons. Almost half of the autosomal recessive forms of juvenile parkinsonism have been associated with mutations in the PARK2 gene coding for parkin, shown to be involved in mitophagy-mediated mitochondrial quality control. The aim of this study was to investigate, in fibroblasts from genetic PD patients carrying parkin mutations, the interplay between mitochondrial bioenergetics and the cell autonomous circadian clock. Using two different in vitro synchronization protocols, we demonstrated that normal fibroblasts displayed rhythmic oscillations of both mitochondrial respiration and glycolytic activity. Conversely, in fibroblasts obtained from PD patients, a severe damping of the bioenergetic oscillatory patterns was observed. Analysis of the core clock genes showed deregulation of their expression patterns in PD fibroblasts, which was confirmed in induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) derived thereof. The results from this study support a reciprocal interplay between the clockwork machinery and mitochondrial energy metabolism, point to a parkin-dependent mechanism of regulation, and unveil a hitherto unappreciated level of complexity in the pathophysiology of PD and eventually other neurodegenerative diseases.


Assuntos
Proteínas CLOCK/genética , Metabolismo Energético/genética , Mutação/genética , Ubiquitina-Proteína Ligases/genética , Animais , Proteínas CLOCK/metabolismo , Respiração Celular , Ritmo Circadiano/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Glicólise , Humanos , Camundongos Nus , Mitocôndrias/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Transcrição Gênica
10.
Mol Cancer ; 17(1): 169, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30501625

RESUMO

EphB2 and EphA2 control stemness and differentiation in the intestinal mucosa, but the way they cooperate with the complex mechanisms underlying tumor heterogeneity and how they affect the therapeutic outcome in colorectal cancer (CRC) patients, remain unclear. MicroRNA (miRNA) expression profiling along with pathway analysis provide comprehensive information on the dysregulation of multiple crucial pathways in CRC.Through a network-based approach founded on the characterization of progressive miRNAomes centered on EphA2/EphB2 signaling during tumor development in the AOM/DSS murine model, we found a miRNA-dependent orchestration of EphB2-specific stem-like properties in earlier phases of colorectal tumorigenesis and the EphA2-specific control of tumor progression in the latest CRC phases. Furthermore, two transcriptional signatures that are specifically dependent on the EphA2/EphB2 signaling pathways were identified, namely EphA2, miR-423-5p, CREB1, ADAMTS14, and EphB2, miR-31-5p, mir-31-3p, CRK, CXCL12, ARPC5, SRC.EphA2- and EphB2-related signatures were validated for their expression and clinical value in 1663 CRC patients. In multivariate analysis, both signatures were predictive of survival and tumor progression.The early dysregulation of miRs-31, as observed in the murine samples, was also confirmed on 49 human tissue samples including preneoplastic lesions and tumors. In light of these findings, miRs-31 emerged as novel potential drivers of CRC initiation.Our study evidenced a miRNA-dependent orchestration of EphB2 stem-related networks at the onset and EphA2-related cancer-progression networks in advanced stages of CRC evolution, suggesting new predictive biomarkers and potential therapeutic targets.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , MicroRNAs/genética , Receptor EphA2/genética , Receptor EphB2/genética , Transdução de Sinais/genética , Animais , Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Camundongos , Transcrição Gênica/genética
11.
PLoS Comput Biol ; 13(6): e1005628, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640805

RESUMO

24,189 are all the possible non-synonymous amino acid changes potentially affecting the human mitochondrial DNA. Only a tiny subset was functionally evaluated with certainty so far, while the pathogenicity of the vast majority was only assessed in-silico by software predictors. Since these tools proved to be rather incongruent, we have designed and implemented APOGEE, a machine-learning algorithm that outperforms all existing prediction methods in estimating the harmfulness of mitochondrial non-synonymous genome variations. We provide a detailed description of the underlying algorithm, of the selected and manually curated training and test sets of variants, as well as of its classification ability.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Análise Mutacional de DNA/métodos , Variação Genética/genética , Genoma Mitocondrial/genética , Genoma Humano/genética , Humanos , Aprendizado de Máquina , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software
12.
Mol Cancer ; 13: 247, 2014 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-25380967

RESUMO

BACKGROUND: Cancer stem cells (CSC) represent a rare fraction of cancer cells characterized by resistance to chemotherapy and radiation, therefore nowadays there is great need to develop new targeted therapies for brain tumors and our study aim to target pivotal transmembrane receptors such as Notch, EGFR and PDGFR, which are already under investigation in clinical trials setting for the treatment of Glioblastoma Multiforme (GBM). METHODS: MTS assay was performed to evaluate cells response to pharmacological treatments. Quantitative RT-PCR and Western blots were performed to state the expression of Notch1, EGFR and PDGFRα/ß and the biological effects exerted by either single or combined targeted therapy in GBM CSC. GBM CSC invasive ability was tested in vitro in absence or presence of Notch and/or EGFR signaling inhibitors. RESULTS: In this study, we investigated gene expression and function of Notch1, EGFR and PDGFR to determine their role among GBM tumor core- (c-CSC) vs. peritumor tissue-derived cancer stem cells (p-CSC) of six cases of GBM. Notch inhibition significantly impaired cell growth of c-CSC compared to p-CSC pools, with no effects observed in cell cycle distribution, apoptosis and cell invasion assays. Instead, anti-EGFR therapy induced cell cycle arrest, sometimes associated with apoptosis and reduction of cell invasiveness in GBM CSC. In two cases, c-CSC pools were more sensitive to simultaneous anti-Notch and anti-EGFR treatment than either therapy alone compared to p-CSC, which were mostly resistant to treatment. We reported the overexpression of PDGFRα and its up-regulation following anti-EGFR therapy in GBM p-CSC compared to c-CSC. RNA interference of PDGFRα significantly reduced cell proliferation rate of p-CSC, while its pharmacological inhibition with Crenolanib impaired survival of both CSC pools, whose effects in combination with EGFR inhibition were maximized. CONCLUSIONS: We have used different drugs combination to identify the more effective therapeutic targets for GBM CSC, particularly against GBM peritumor tissue-derived CSC, which are mostly resistant to treatments. Overall, our results provide the rationale for simultaneous targeting of EGFR and PDGFR, which would be beneficial in the treatment of GBM.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Receptor Notch1/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Neoplasias Encefálicas/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
13.
Stem Cell Res ; 78: 103468, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852424

RESUMO

Hypomyelinating leukodystrophies (HLD) are a group of heterogeneous genetic disorders characterized by a deficit in myelin deposition during brain development. Specifically, 4H-Leukodystrophy is a recessive disease due to biallelic mutations in the POLR3A gene, which encodes one of the subunits forming the catalytic core of RNA polymerase III (PolIII). The disease also presents non-neurological signs such as hypodontia and hypogonadotropic hypogonadism. Here, we report the generation of a human induced pluripotent stem cell (hiPSC) line from fibroblasts of the first identified carrier of the biallelic POLR3A variants c.1802 T > A and c.4072G > A.


Assuntos
Células-Tronco Pluripotentes Induzidas , RNA Polimerase III , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Linhagem Celular , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Masculino , Alelos
14.
Cell Mol Life Sci ; 69(7): 1193-210, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22076651

RESUMO

Cell therapy is reaching the stage of phase I clinical trials for post-traumatic, post-ischemic, or neurodegenerative disorders, and the selection of the appropriate cell source is essential. In order to assess the capacity of different human neural stem cell lines (hNSC) to contribute to neural tissue regeneration and to reduce the local inflammation after an acute injury, we transplanted GMP-grade non-immortalized hNSCs and v-myc (v-IhNSC), c-myc T58A (T-IhNSC) immortalized cells into the corpus callosum of adult rats after 5 days from focal demyelination induced by lysophosphatidylcholine. At 15 days from transplantation, hNSC and T-IhNSC migrated to the lesioned area where they promoted endogenous remyelination and differentiated into mature oligodendrocytes, while the all three cell lines were able to integrate in the SVZ. Moreover, where demyelination was accompanied by an inflammatory reaction, a significant reduction of microglial cells' activation was observed. This effect correlated with a differential migratory pattern of transplanted hNSC and IhNSC, significantly enhanced in the former, thus suggesting a specific NSC-mediated immunomodulatory effect on the local inflammation. We provide evidence that, in the subacute phase of a demyelination injury, different human immortalized and non-immortalized NSC lines, all sharing homing to the stem niche, display a differential pathotropism, both through cell-autonomous and non-cell autonomous effects. Overall, these findings promote IhNSC as an inexhaustible cell source for large-scale preclinical studies and non-immortalized GMP grade hNSC lines as an efficacious, safe, and reliable therapeutic tool for future clinical applications.


Assuntos
Doenças Desmielinizantes/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Transplante de Células , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Feminino , Humanos , Células-Tronco Neurais/citologia , Fenótipo , Ratos
15.
Neurobiol Sleep Circadian Rhythms ; 14: 100094, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37025301

RESUMO

Circadian rhythm impairment may play a role in Parkinson's disease (PD) pathophysiology. Recent literature associated circadian rhythm features to the risk of developing Parkinson and to its progression through stages. The association between the chronotype and the phenotype should be verified on a clinical and biological point of view. Herein we investigate the chronotype of a sample of 50 PD patients with the Morningness Eveningness Questionnaire and monitor their daily activity with a motion sensor embedded in a smartphone. Fibroblasts were collected from PD patients (n = 5) and from sex/age matched controls (n = 3) and tested for the circadian expression of clock genes (CLOCK, BMAL1, PER1, CRY1), and for cell morphology, proliferation, and death. Our results show an association between the chronotype and the PD phenotype. The most representative clinical chronotypes were "moderate morning" (56%), the "intermediate" (24%) and, in a minor part, the "definite morning" (16%). They differed for axial motor impairment, presence of motor fluctuations and quality of life (p < 0.05). Patients with visuospatial dysfunction and patients with a higher PIGD score had a blunted motor daily activity (p = 0.006 and p = 0.001, respectively), independently by the influence of age and other motor scores. Fibroblasts obtained by PD patients (n = 5) had an impaired BMAL1 cycle compared to controls (n = 3, p = 0.01). Moreover, a PD flat BMAL1 profile was associated with the lowest cell proliferation and the largest cell morphology. This study contributes to the growing literature on CR abnormalities in the pathophysiology of Parkinson's disease providing a link between the clinical and biological patient chronotype and the disease phenomenology.

17.
Stem Cell Res ; 67: 103023, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36638628

RESUMO

Familial Hypocalciuric Hypercalcemia (FHH1) is a rare autosomal dominant disease with low penetrance, caused by inactivating mutations of the calcium-sensing receptor (CaSR) gene, characterized by significant hypercalcemia, inappropriately normal serum PTH levels and a low urinary calcium level. Human induced pluripotent stem cells (hiPSCs) from a patient carrying a previously identified heterozygous mutation, a p.T972M amino acid substitution in cytoplasmic tail of CasR, were produced using a virus, xeno-free and non-integrative protocol.


Assuntos
Hipercalcemia , Células-Tronco Pluripotentes Induzidas , Humanos , Mutação Puntual , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Hipercalcemia/genética , Mutação , Cálcio
18.
Nat Commun ; 14(1): 5058, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598215

RESUMO

Mitochondrial dysfunction has pleiotropic effects and is frequently caused by mitochondrial DNA mutations. However, factors such as significant variability in clinical manifestations make interpreting the pathogenicity of variants in the mitochondrial genome challenging. Here, we present APOGEE 2, a mitochondrially-centered ensemble method designed to improve the accuracy of pathogenicity predictions for interpreting missense mitochondrial variants. Built on the joint consensus recommendations by the American College of Medical Genetics and Genomics/Association for Molecular Pathology, APOGEE 2 features an improved machine learning method and a curated training set for enhanced performance metrics. It offers region-wise assessments of genome fragility and mechanistic analyses of specific amino acids that cause perceptible long-range effects on protein structure. With clinical and research use in mind, APOGEE 2 scores and pathogenicity probabilities are precompiled and available in MitImpact. APOGEE 2's ability to address challenges in interpreting mitochondrial missense variants makes it an essential tool in the field of mitochondrial genetics.


Assuntos
Aminoácidos , Mutação de Sentido Incorreto , Humanos , Mutação , Aprendizado de Máquina , Mitocôndrias/genética
19.
Methods Mol Biol ; 2389: 57-66, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34558001

RESUMO

NSCs have been demonstrated to be very useful in grafts into the mammalian central nervous system to investigate the exploitation of NSC for the therapy of neurodegenerative disorders in animal models of neurodegenerative diseases. To push cell therapy in CNS on stage of clinical application, it is necessary to establish a continuous and standardized, clinical grade (i.e., produced following the good manufacturing practice guidelines) human neural stem cell lines.In this chapter we will illustrate some of the protocols for the production and characterization routinely used into our GMP "cell factory" for the production of "clinical grade" human neural stem cell lines already in use in clinical trials on neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS- Clinicaltrials.gov number NCT01640067) and secondary progressive multiple sclerosis (SPMS- Clinicaltrials.gov number NCT03282760).


Assuntos
Células-Tronco Neurais , Esclerose Lateral Amiotrófica/terapia , Animais , Células Cultivadas , Sistema Nervoso Central , Feto , Humanos , Doenças Neurodegenerativas , Transplante de Células-Tronco
20.
PLoS One ; 17(8): e0273679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040977

RESUMO

INTRODUCTION: In central nervous system neurodegenerative disorders, stem cell-based therapies should be considered as a promising therapeutic approach. The safe use of human Neural Stem Cells (hNSCs) for the treatment of several neurological diseases is currently under evaluation of phase I/II clinical trials. Clinical application of hNSCs require the development of GMP standardized protocols capable of generating high quantities of reproducible and well characterized stem cells bearing stable functional and genetic properties. AIM: The aim of this study was to evaluate possible instabilities or modifications of the microsatellite loci in different culture passages because high culture passages represent an in vitro replicative stress leading to senescence. Experimental method: The hNSCs were characterized at different culture time points, from passage 2 to passage 25, by genetic typing at ten microsatellite loci. CONCLUSION: We showed that genetic stability at microsatellite loci is maintained by the cells even at high passages adding a further demonstration of the safety of our hNSCs GMP culture method.


Assuntos
Instabilidade de Microssatélites , Células-Tronco Neurais , Diferenciação Celular , Humanos , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa