Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(27): e202404278, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656696

RESUMO

Positron emission tomography (PET) is becoming increasingly important in nuclear medicine and drug discovery. To date, the development of many potential PET tracers is hampered by the lack of suitable synthetic pathways for their preparation. This is particularly true for the highly desired radiolabeling of compounds bearing [18F]CF3-groups. For instance, S(O)nCF3-groups (n=0, 1, 2) serve as structural motif in a range of biologically active compounds, but their radiosynthesis remains largely unprecedented (for n=1, 2). Herein, we describe general methods for the radiosynthesis of 18F-labeled aryl trifluoromethyl sulfones, -sulfoxides, and -sulfides. All three methods are operationally straightforward, start from widely available precursors, i.e., sulfonyl fluorides and thiophenols, and make use of the recently established [18F]Ruppert-Prakash reagent. Further, the syntheses display good functional group tolerance as demonstrated by the 18F-labeling of more than 40 compounds. The applicability of the new method is demonstrated by the radiolabeling of three bioactive molecules, optionally to be used as PET tracers. In a broader context, this work presents a substantial expansion of the chemical space of radiofluorinated structural motifs to be used for the development of new PET tracers.

2.
Angew Chem Int Ed Engl ; : e202416901, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349368

RESUMO

The development of new tracers for positron emission tomography (PET) is highly dependent on the available synthetic tools for their radiosynthesis. Herein, we present the radiosynthesis and application of [18F]trifluoroiodomethane - the first reagent for broad scope radical [18F]trifluoromethylation chemistry in high molar activity. CF218FI can be prepared from [18F]fluoroform with 67±5% AY and >99% RCP. Its synthetic utility is demonstrated by the radiosynthesis of previously unprecedented 18F-labeled a-trifluoromethyl ketones and trifluoromethyl sulfides, important motifs that are present in a range of bioactive compounds. Both protocols are Ru- and photo-mediated and proceed under mild reaction conditions. They show good functional group tolerance evidenced by the respective reaction scopes and make use of easily obtainable starting materials. The products can be isolated in 8.3-11.1 GBq/µmol (starting from ca. 5 GBq [18F]fluoride). The applicability to PET tracer synthesis is shown by the radiolabeling of bioactive compounds, such as derivatives of probenecid and febuxostat. In a broader context, this work opens the door to the utilization of radical [18F]trifluoromethylation chemistry for the radiolabeling of PET tracers in high molar activity.

3.
Chem Commun (Camb) ; 60(53): 6801-6804, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38869169

RESUMO

A method for the radiosynthesis of 18F-labelled aryl trifluoromethyl ketones starting from widely available Weinreb amides using [18F]fluoroform is presented. The method uses potassium hexamethyldisilazane as base and delivers products in high molar activity (up to 24 GBq µmol-1) and excellent radiochemical conversions. The applicability for PET tracer synthesis is demonstrated by the radiosynthesis of ten (hetero)aryl trifluoromethylketones, bearing electron-withdrawing and -donating substituents including a derivative of bioactive probenecid.

4.
Org Lett ; 23(9): 3502-3506, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33844551

RESUMO

One-pot procedures bear the potential to rapidly build up molecular complexity without isolation and purification of consecutive intermediates. Here, we report multicatalytic protocols that convert alkenes, unsaturated aliphatic alcohols, and aryl boronic acids into secondary benzylic alcohols with high stereoselectivities (typically >95:5 er) under sequential catalysis that integrates alkene cross-metathesis, isomerization, and nucleophilic addition. Prochiral allylic alcohols can be converted to any stereoisomer of the product with high stereoselectivity (>98:2 er, >20:1 dr).

5.
Nat Chem ; 14(9): 1088, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36028622

Assuntos
Fosfinas , Xantenos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa