Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Toxicol Appl Pharmacol ; 485: 116904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503349

RESUMO

Manganese (Mn)-induced pulmonary toxicity and the underlying molecular mechanisms remain largely enigmatic. Further, in recent years, microRNAs (miRNAs) have emerged as regulators of several pollutants-mediated toxicity. In this context, our study aimed at elucidating whether miRNAs are involved in manganese (II) chloride (MnCl2) (Mn2+)-induced cytotoxicity in lung epithelial cells. Growth inhibition of Mn2+ towards normal human bronchial epithelial (BEAS-2B) and adenocarcinomic human alveolar basal epithelial (A549) cells was analyzed by MTT assay following 24 or 48 h treatment. Reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm), cell cycle arrest, and apoptosis were evaluated by flow cytometry. RT-qPCR and Western blot were performed to analyze the expression of cyclins, anti-oxidant genes, and miRNAs. We used small RNA sequencing to investigate Mn2+-induced changes in miRNA expression patterns. In both cell lines, Mn2+ treatment inhibited growth in a dose-dependent manner. Further, compared with vehicle-treated cells, Mn2+ (250 µM) treatment induced ROS generation, cell cycle arrest, apoptosis, and decreased ΔΨm as well as altered the expression of cyclins and anti-oxidant genes. Sequencing data revealed that totally 296 miRNAs were differentially expressed in Mn2+-treated cells. Among them, miR-221-3p was one of the topmost down-regulated miRNAs in Mn2+-treated cells. We further confirmed this association in A549 cells. In addition, transient transfection was performed to study gain-of-function experiments. Forced expression of miR-221-3p significantly improved cell viability and reduced Mn2+-induced cell cycle arrest and apoptosis in BEAS-2B cells. In conclusion, miR-221-3p may be the most likely target that accounts for the cytotoxicity of Mn2+-exposed lung epithelial cells.


Assuntos
Apoptose , Células Epiteliais , Pulmão , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células A549 , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Apoptose/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Compostos de Manganês , Manganês/toxicidade , Linhagem Celular , Cloretos/toxicidade , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga
2.
Indian J Microbiol ; 64(1): 36-47, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468742

RESUMO

Tuberculosis (TB) is a major public health concern that results in significant morbidity and mortality, particularly in middle- to low-income countries. Extra-pulmonary tuberculosis (EPTB) in adults is a form of TB that affects organs other than the lungs and is challenging to diagnose and treat due to a lack of accurate early diagnostic markers and inadequate knowledge of host immunity. Next-generation sequencing-based approaches have shown potential for identifying diagnostic biomarkers and host immune responses related to EPTB. This strategic review discusses on the significance using primary human cells and cell lines for in vitro transcriptomic studies on common forms of EPTB, such as lymph node TB, brain TB, bone TB, and endometrial TB to derive potential insights. While organoids have shown promise as a model system, primary cell lines still remain a valuable tool for studying host-pathogen interplay due to their conserved immune system, non-iPSC origin, and lack of heterogeneity in cell population. This review outlines a basic workflow for researchers interested in performing transcriptomics studies in EPTB, and also discusses the potential of cell-line based dual RNA-Seq technology for deciphering comprehensive transcriptomic signatures, host-pathogen interplay, and biomarkers from the host and Mycobacterium tuberculosis. Thus, emphasizing the implementation of this technique which can significantly contribute to the global anti-TB effort and advance our understanding of EPTB.

3.
Exp Eye Res ; 223: 109194, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35868364

RESUMO

Diabetic Retinopathy is prevalent among patients with uncontrolled hyperglycemia resulting in vision loss. Despite numerous challenges to create a link among these conditions, the characterization of pathological neovascularization causing retinal damage due to the prognosis of early non-proliferative diabetic retinopathy to late proliferative diabetic retinopathy needs deep understanding. In this study, meta-analysis-based integration of gene expression datasets for the fibrovascular membrane of PDR and neural retina of NPDR were compared, to investigate the differentially expressed genes involved in retinal angiogenesis. Human samples with gene expression profiling of the same experiment type and platform with sufficient information for analysis were included in the study. The studies from cell lines and non-human studies, human samples that include serum, cornea, lens, and/or other ocular tissues or fluids, and studies that lack basic information for analysis were excluded. The microarray datasets available in the Gene Expression Omnibus database of the early and late stages in DR were screened to find common gene expression profiles. Using the INMEX bioinformatics tool, significantly upregulated and downregulated genes in the neural retina of Non-Proliferative Diabetic Retinopathy and fibrovascular membrane of Proliferative Diabetic Retinopathy were compared and studied by the combine effect size method. Using the STRING database PPI network, 50 upregulated and 50 downregulated genes were used to find the key candidate genes involved in retinal disease/degeneration in eye/retinal tissues. In the extensive gene expression meta-analysis performed using INMEX bioinformatics tool, overall, 7935 differentially expressed genes were identified and the respective heatmap was created by using the visualization tools of INVEX. STRING database PPI network identified Retinol Binding Protein 3, Neural Retina Leucine Zipper, S-Antigen Visual Arrestin, Peripherin 2, and Aryl Hydrocarbon Receptor Interacting Protein Like-1 to be the most highly ranked hub genes. The newly discovered potential genes related to retinal angiogenesis causing FVM formation in DR may provide insight into the cellular pathogenesis of NPDR to PDR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Arrestinas/metabolismo , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Expressão Gênica , Humanos , Neovascularização Patológica/metabolismo , Periferinas/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Retina/metabolismo , Proteínas de Ligação ao Retinol/metabolismo
4.
Molecules ; 27(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35164341

RESUMO

Terminalia chebula Retz. forms a key component of traditional folk medicine and is also reported to possess antihepatitis C virus (HCV) and immunomodulatory activities. However, information on the intermolecular interactions of phytochemicals from this plant with HCV and human proteins are yet to be established. Thus, by this current study, we investigated the HCV NS3/4A inhibitory and host immune-modulatory activity of phytocompounds from T. chebula through in silico strategies involving network pharmacology and structural bioinformatics techniques. To start with, the phytochemical dataset of T. chebula was curated from biological databases and the published literature. Further, the target ability of the phytocompounds was predicted using BindingDB for both HCV NS3/4A and other probable host targets involved in the immune system. Further, the identified targets were docked to the phytochemical dataset using AutoDock Vina executed through the POAP pipeline. The resultant docked complexes with significant binding energy were subjected to 50 ns molecular dynamics (MD) simulation in order to infer the stability of complex formation. During network pharmacology analysis, the gene set pathway enrichment of host targets was performed using the STRING and Reactome pathway databases. Further, the biological network among compounds, proteins, and pathways was constructed using Cytoscape 3.6.1. Furthermore, the druglikeness, side effects, and toxicity of the phytocompounds were also predicted using the MolSoft, ADVERpred, and PreADMET methods, respectively. Out of 41 selected compounds, 10 were predicted to target HCV NS3/4A and also to possess druglike and nontoxic properties. Among these 10 molecules, Chebulagic acid and 1,2,3,4,6-Pentagalloyl glucose exhibited potent HCV NS3/4A inhibitory activity, as these scored a lowest binding energy (BE) of -8.6 kcal/mol and -7.7 kcal/mol with 11 and 20 intermolecular interactions with active site residues, respectively. These findings are highly comparable with Asunaprevir (known inhibitor of HCV NS3/4A), which scored a BE of -7.4 kcal/mol with 20 key intermolecular interactions. MD studies also strongly suggest that chebulagic acid and 1,2,3,4,6-Pentagalloyl glucose as promising leads, as these molecules showed stable binding during 50 ns of production run. Further, the gene set enrichment and network analysis of 18 protein targets prioritized 10 compounds and were predicted to potentially modulate the host immune system, hemostasis, cytokine levels, interleukins signaling pathways, and platelet aggregation. On overall analysis, this present study predicts that tannins from T. chebula have a potential HCV NS3/4A inhibitory and host immune-modulatory activity. However, further experimental studies are required to confirm the efficacies.


Assuntos
Antivirais/farmacologia , Hepacivirus/enzimologia , Serina Proteases/química , Serina Proteases/metabolismo , Taninos/farmacologia , Terminalia/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Antivirais/efeitos adversos , Antivirais/química , Benzopiranos/farmacologia , Domínio Catalítico , Simulação por Computador , Glucosídeos/farmacologia , Hepacivirus/efeitos dos fármacos , Taninos Hidrolisáveis/farmacologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Farmacologia em Rede , Extratos Vegetais/farmacologia , Ligação Proteica , Conformação Proteica , Taninos/efeitos adversos , Taninos/química , Proteínas não Estruturais Virais/antagonistas & inibidores
5.
J Cell Biochem ; 120(2): 2271-2288, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30302805

RESUMO

Chlamydia trachomatis (C.t) is a gram-negative obligate intracellular bacteria, which is a major causative of infectious blindness and sexually transmitted diseases. A surge in multidrug resistance among chlamydial species has posed a challenge to adopt alternative drug targeting strategies. Recently, in C.t, L,L-diaminopimelate aminotransferase (CtDAP-AT) is proven to be a potential drug target due its essential role in cell survival and host nonspecificity. Hence, in this study, a multilevel precision-based virtual screening of CtDAP-AT was performed to identify potential inhibitors, wherein, an integrative stringent scoring and filtration were performed by coupling, glide docking score, binding free energy, ADMET (absorption, distribution, metabolism, and excretion, toxicity) prediction, density functional theory (quantum mechanics), and molecular dynamics simulation (molecular mechanics). On cumulative analysis, NSC_5485 (1,3-bis((7-chloro-4-quinolinyl)amino)-2-propanol) was found to be the most potential lead, as it showed higher order significance in terms of binding affinity, bonded interactions, favorable ADMET, chemical reactivity, and greater stabilization during complex formation. This is the first report on prioritization of small molecules from National Cancer Institute (NCI) and Maybridge data sets (341 519 compounds) towards targeting CtDAP-AT. Thus, the proposed compound shall aid in effective combating of a broad spectrum of C.t infections as it surpassed all the levels of prioritization.

6.
J Cell Biochem ; 119(4): 3236-3246, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29091310

RESUMO

Toxoplasma gondii an obligate intracellular parasite causes toxoplasmosis in homeothermic animals. Host invasion of this parasite is mediated by the formation of Moving Junction (MJ) complex which encompasses a network of microneme and Rhoptry Neck proteins (RONs) 2/4/5/8. Among these proteins, RON4 is the only cytosolic secretory protein that is considered as a crucial member, as it directly facilitates the motility of MJ complex by interacting with host tubulin. It is also prominently localized at the host-pathogen interface during the invasion, thus projecting it as a potential drug target. The structure of RON4 is yet to be crystallized. Hence, in this study, fold recognition and Free Energy Landscape sampling was performed to predict the plausible 3D structure of RON4. Further, its interacting pattern with the reported crystal structure of human tubulin was analyzed using molecular docking. Subsequently, a ß-tubulin based inhibitory peptides were derived based on its interacting interface observed in RON4-ß-tubulin docked complex. Following which, a stepwise validation of these peptides for various physico-chemical properties and its homology with antimicrobial peptides were also screened. The peptide (RT_pep) surpassing all these validation filters was modeled and its stability was analysed by Molecular Dynamics simulation. To validate further, the stable conformation of the RT_pep was docked to RON4. Finally, essential molecular dynamics simulation was conducted to determine the stability and atomic motions of native RON4 and also to decipher its association with ß-tubulin and RT_pep. All these analyses cumulatively suggest the therapeutic potential of RT_pep in targeting toxoplasmosis.


Assuntos
Peptídeos/farmacologia , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Células Cultivadas , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Proteínas de Protozoários/química , Relação Estrutura-Atividade
7.
J Comput Aided Mol Des ; 32(8): 821-840, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29980923

RESUMO

Heparanase (HPSE) is an endo-ß-D-glucuronidase that has diverse functions in mammals which includes cell survival, cell adhesion and cell migration. HPSE features both enzymatic and non-enzymatic functionalities in a pH dependent manner. Hence, in this study, an extensive molecular dynamics simulation, molecular docking, protein Angular dispersion analysis were performed for apo form and holo forms to understand its conformational changes at varied pH conditions. On comparative conformational analysis of apo and holo forms, it was inferred that the HSPE has undergone pH dependent structural changes, thereby affecting the binding of Heparan sulfate proteoglycan (HSPG). Moreover, HPSE also showed favourable structural changes for optimal binding of HSPG at pH 5.0 and 6.0, as inferred from functional flap displacements within HPSE. Thus, this study provides significant insights on optimal pH for HPSE to exhibit its enzymatic activity. The outcome of this study shall aid in ideal lead generation for targeting HPSE mediated disease conditions.


Assuntos
Glucuronidase/química , Proteoglicanas de Heparan Sulfato/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Humanos , Concentração de Íons de Hidrogênio , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
8.
Lipids Health Dis ; 16(1): 17, 2017 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-28109294

RESUMO

BACKGROUND: PPARγ is an isoform of peroxisome proliferator-activated receptor (PPAR) belonging to a super family of nuclear receptors. PPARγ receptor is found to play a crucial role in the modulation of lipid and glucose homeostasis. Its commotion has been reported to play a significant role in a broad spectrum of diseases such as type 2 diabetes mellitus, inflammatory diseases, Alzheimer's disease, and in some cancers. Hence, PPARγ is an important therapeutic target. Polyunsaturated fatty acids (PUFAs) and their metabolites (henceforth referred to as bioactive lipids) are known to function as agonists of PPARγ. However, agonistic binding modes and affinity of these ligands to PPARγ are yet to be deciphered. METHODS: In this study, we performed a comparative molecular docking, binding free energy calculation and molecular dynamics simulation to infer and rank bioactive lipids based on the binding affinities with the ligand binding domain (LBD) of PPARγ. RESULTS: The results inferred affinity in the order of resolvin E1 > neuroprotectin D1 > hydroxy-linoleic acid > docosahexaenoic acid > lipoxin A4 > gamma-linolenic acid, arachidonic acid > alpha-linolenic acid > eicosapentaenoic acid > linoleic acid. Of all the bioactive lipids studied, resolvin E1, neuroprotectin D1 and hydroxy-linoleic acid showed significant affinity comparable to proven PPARγ agonist namely, rosiglitazone, in terms of Glide XP docking score, H-bond formation with the key residues, binding free energy and stable complex formation with LBD favouring co-activator binding, as inferred through Molecular Dynamics trajectory analysis. CONCLUSION: Hence, these three bioactive lipids (resolvin E1, neuroprotectin D1 and hydroxy-linoleic acid) may be favourably considered as ideal drug candidates in therapeutic modulation of clinical conditions such as type 2 DM, Alzheimer's disease and other instances where PPARγ is a key player.


Assuntos
Anti-Inflamatórios/química , Ácidos Docosa-Hexaenoicos/química , Ácido Eicosapentaenoico/análogos & derivados , Ácidos Linoleicos/química , Simulação de Acoplamento Molecular , PPAR gama/química , Anti-Inflamatórios/metabolismo , Ácido Araquidônico/química , Ácido Araquidônico/metabolismo , Sítios de Ligação , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/metabolismo , Humanos , Cinética , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Ácidos Linoleicos/metabolismo , Lipoxinas/química , Lipoxinas/metabolismo , Simulação de Dinâmica Molecular , PPAR gama/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Rosiglitazona , Termodinâmica , Tiazolidinedionas/química , Tiazolidinedionas/metabolismo , Ácido alfa-Linolênico/química , Ácido alfa-Linolênico/metabolismo , Ácido gama-Linolênico/química , Ácido gama-Linolênico/metabolismo
9.
Pharm Biol ; 55(1): 368-373, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27931154

RESUMO

CONTEXT: Alzheimer's disease (AD) is the most common form of dementia affecting the aged population and neuroinflammation is one of the most observed AD pathologies. NF-κB is the central regulator of inflammation and inhibitor κB kinase (IKK) is the converging point in NF-κB activation. Celastrol is a natural triterpene used as a treatment for inflammatory conditions. OBJECTIVE: This study determines the neuroprotective and inhibitory effect of celastrol on amyloid beta1-42 (Aß1-42) induced cytotoxicity and IKKß activity, respectively. MATERIALS AND METHODS: Retinoic acid differentiated IMR-32 cells were treated with celastrol (1 µM) before treatment with Aß1-42 (IC30 10 µM) for 24 h. The cytotoxicity and IKK phosphorylation were measured by MTT and western blotting analysis, respectively. We screened 36 celastrol analogues for the IKKß inhibition by molecular docking and evaluated their drug like properties to delineate the neuroprotective effects. RESULTS: Celastrol (1 µM) inhibited Aß1-42 (10 µM) induced IκBα phosphorylation and protected IMR-32 cells from cell death. Celastrol and 25 analogues showed strong binding affinity with IKKß as evidenced by strong hydrogen-bonding interactions with critical active site residues. All the 25 analogues displayed strong anti-inflammatory properties but only 11 analogues showed drug-likeness. Collectively, molecule 15 has highest binding affinity, CNS activity and more drug likeness than parent compound celastrol. DISCUSSION AND CONCLUSION: The decreased expression of pIκBα in celastrol pretreated cells affirms the functional representation of inhibited IKKß activity in these cells. The neuroprotective potentials of celastrol and its analogues may be related to IKK inhibition.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Quinase I-kappa B/antagonistas & inibidores , Simulação de Acoplamento Molecular , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Triterpenos/farmacologia , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Ligação de Hidrogênio , Quinase I-kappa B/química , Quinase I-kappa B/metabolismo , Neurônios/enzimologia , Neurônios/patologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/metabolismo , Triterpenos Pentacíclicos , Fragmentos de Peptídeos/toxicidade , Fosforilação , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Tretinoína/farmacologia , Triterpenos/química , Triterpenos/metabolismo
10.
Biochem Biophys Res Commun ; 469(2): 257-62, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26642954

RESUMO

Neocarzinostatin (NCS) a potent DNA-damaging, anti-tumor toxin extracted from Streptomyces carzinostaticus that recognizes double-stranded DNA bulge and induces DNA damage. 2 Fluoro (2F) Modified EpCAM RNA aptamer is a 23-mer that targets EpCAM protein, expressed on the surface of epithelial tumor cells. Understanding the interaction between NCS and the ligand is important for carrying out the targeted tumor therapy. In this study, we have investigated the biophysical interactions between NCS and 2-fluro Modified EpCAM RNA aptamer using Circular Dichroism (CD) and Infra-Red (IR) spectroscopy. The aromatic amino acid residues spanning the ß sheets of NCS are found to participate in intermolecular interactions with 2 F Modified EpCAM RNA aptamer. In-silico modeling and simulation studies corroborate with CD spectra data. Furthermore, it reinforces the involvement of C and D1 strand of NCS in intermolecular interactions with EpCAM RNA aptamer. This the first report on interactions involved in the stabilization of NCS-EpCAM aptamer complex and will aid in the development of therapeutic modalities towards targeted cancer therapy.


Assuntos
Antígenos de Neoplasias/química , Antígenos de Neoplasias/ultraestrutura , Aptâmeros de Nucleotídeos/química , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/ultraestrutura , Modelos Químicos , Simulação de Acoplamento Molecular , Zinostatina/química , Sítios de Ligação , Citotoxinas , Molécula de Adesão da Célula Epitelial , Conformação Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos
11.
Evol Bioinform Online ; 20: 11769343241240558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586439

RESUMO

Mycobacterium orygis, a subspecies of the Mycobacterium tuberculosis complex (MTBC), has emerged as a significant concern in the context of One Health, with implications for zoonosis or zooanthroponosis or both. MTBC strains are characterized by the unique insertion element IS6110, which is widely used as a diagnostic marker. IS6110 transposition drives genetic modifications in MTBC, imparting genome plasticity and profound biological consequences. While IS6110 insertions are customarily found in the MTBC genomes, the evolutionary trajectory of strains seems to correlate with the number of IS6110 copies, indicating enhanced adaptability with increasing copy numbers. Here, we present a comprehensive analysis of IS6110 insertions in the M. orygis genome, utilizing ISMapper, and elucidate their genetic consequences in promoting successful host adaptation. Our study encompasses a panel of 67 paired-end reads, comprising 11 isolates from our laboratory and 56 sequences downloaded from public databases. Among these sequences, 91% exhibited high-copy, 4.5% low-copy, and 4.5% lacked IS6110 insertions. We identified 255 insertion loci, including 141 intragenic and 114 intergenic insertions. Most of these loci were either unique or shared among a limited number of isolates, potentially influencing strain behavior. Furthermore, we conducted gene ontology and pathway analysis, using eggNOG-mapper 5.0, on the protein sequences disrupted by IS6110 insertions, revealing 63 genes involved in diverse functions of Gene Ontology and 45 genes participating in various KEGG pathways. Our findings offer novel insights into IS6110 insertions, their preferential insertion regions, and their impact on metabolic processes and pathways, providing valuable knowledge on the genetic changes underpinning IS6110 transposition in M. orygis.

12.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344920

RESUMO

The biosynthetic arginine decarboxylase in Thermus thermophilus is responsible for producing spermidine, a polyamine with numerous biological applications in humans. The arginine decarboxylase has significant applications in biotechnology industries, suggesting the need to evaluate its biochemical and biophysical characteristics at the molecular level. In this study, both in vitro and in silico methods were employed to investigate the structural and functional behavior of the arginine decarboxylase protein. In in vitro, MALDI-TOF, size exclusion, and assay studies were performed to examine the nature and activity of the protein. The MALDI-TOF analysis confirmed the purified protein as biosynthetic arginine decarboxylase. The assay results revealed that the Pyridoxal 5'-Phosphate (PLP) cofactor plays a crucial role in enhancing enzyme activity by producing agmatine (a by-product of spermidine). Further, optimum enzyme activity was observed at 50 °C, suggesting the extremophilic nature of the enzyme. Unlike other proteins, this enzyme displayed optimal activity at both acidic and basic pH, demonstrating its sensitivity to pH changes. Furthermore, the addition of divalent ions like Mg 2+ increased the rate of reaction. In in silico, structure modeling, and comparative molecular dynamics simulation studies were used to assess the protein stability and behavior at different pH and temperature conditions. The findings of this study could be applied to improve enzyme production in the industry.Communicated by Ramaswamy H. Sarma.

13.
Int J Biol Macromol ; 258(Pt 1): 128899, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141706

RESUMO

Paraoxonase 2 (PON2) is an intracellular anti-oxidant protein ubiquitously expressed in all cells and reduces reactive oxygen species, endoplasmic reticulum (ER) stress, further improves mitochondrial function and thereby shows anti-apoptotic function. In diabetes and its complications this PON gets glycated and becomes in effective. The PON activity is reported to be reduced in diabetic retinopathy and we have earlier showed Carboxy methyl lysine (AGE) decreased PON2 expression and activity in Human retinal endothelial cells (HREC) . In this study, we have designed and developed a mutated PON2 by in silico and in vitro approach which can resist glycation. Where in glycation-prone residues in PON2 was predicted using in silico analyses and a mutated PON2 was developed using in vitro site directed mutagenesis (SDM) assay mPON2 (mutant PON2-PON2-K70A) and its efficacy was compared with wPON2 (wild type PON2). CML glycated wPON2 and reduced its activity when compared with mPON2 in HREC confirmed by immunoprecipitation and in vitro experiments. Additionally, mPON2 interaction efficiency with its substrates was higher than wPON2 by insilico assay and demonstrated enhanced inhibition against CML-induced oxidative stress, ER stress, pro-inflammation, and mitochondrial fission than wPON2 by invitro assay. Further mPON2 showed increased inhibition of phosphorylation of NFĸB induced by CML. Our investigation establishes that the over expression of mPON2 in HREC can defy glycation and therefore mitigate ER stress and inflammation against CML than endogenous wPON2. These findings imply that mPON2 can be a beneficial therapeutic target against diabetic retinopathy.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Reação de Maillard , Arildialquilfosfatase/metabolismo , Estresse Oxidativo , Inflamação/metabolismo , Diabetes Mellitus/metabolismo
14.
Int J Biol Macromol ; 267(Pt 1): 131326, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569988

RESUMO

Aspartate kinase (AK), an enzyme from the Wolbachia endosymbiont of Brugia malayi (WBm), plays a pivotal role in the bacterial cell wall and amino acid biosynthesis, rendering it an attractive candidate for therapeutic intervention. Allosteric inhibition of aspartate kinase is a prevalent mode of regulation across microorganisms and plants, often modulated by end products such as lysine, threonine, methionine, or meso-diaminopimelate. The intricate and diverse nature of microbial allosteric regulation underscores the need for rigorous investigation. This study employs a combined experimental and computational approach to decipher the allosteric regulation of WBmAK. Molecular Dynamics (MD) simulations elucidate that ATP (cofactor) and ASP (substrate) binding induce a closed conformation, promoting enzymatic activity. In contrast, the binding of lysine (allosteric inhibitor) leads to enzyme inactivation and an open conformation. The enzymatic assay demonstrates the optimal activity of WBmAK at 28 °C and a pH of 8.0. Notably, the allosteric inhibition study highlights lysine as a more potent inhibitor compared to threonine. Importantly, this investigation sheds light on the allosteric mechanism governing WBmAK and imparts novel insights into structure-based drug discovery, paving the way for the development of effective inhibitors against filarial pathogens.


Assuntos
Aspartato Quinase , Brugia Malayi , Simulação de Dinâmica Molecular , Wolbachia , Brugia Malayi/enzimologia , Brugia Malayi/microbiologia , Regulação Alostérica , Animais , Aspartato Quinase/metabolismo , Aspartato Quinase/genética , Aspartato Quinase/química , Simbiose , Trifosfato de Adenosina/metabolismo , Lisina/química , Lisina/metabolismo
15.
J Biomol Struct Dyn ; 42(4): 2058-2074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37599457

RESUMO

The malarial parasite Plasmodium falciparum predominantly causes severe malaria and deaths worldwide. Moreover, resistance developed by P. falciparum to frontline drugs in recent years has markedly increased malaria-related deaths in South Asian Countries. Ribulose 5-phosphate and NADPH synthesized by Pentose Phosphate Pathway (PPP) act as a direct precursor for nucleotide synthesis and P. falciparum survival during oxidative challenges in the intra-erythrocytic growth phase . In the present study, we have elucidated the structure and functional characteristics of 6-phosphogluconate dehydrogenase (6PGD) in P. falciparum and have identified potent hits against 6PGD by pharmacophore-based virtual screening with ZINC and ChemBridge databases. Molecular docking and Molecular dynamics simulation, binding free energies (MMGBSA & MMPBSA), and Density Functional Theory (DFT) calculations were integratively employed to validate and prioritize the most potential hits. The 6PGD structure was found to have an open and closed conformation during MD simulation. The apo form of 6PGD was found to be in closed conformation, while a open conformation attributed to facilitating binding of cofactor. It was also inferred from the conformational analysis that the small domain of 6PGD has a high influence in altering the conformation that may aid in open/closed conformation of 6PGD. The top three hits identified using pharmacophore hypotheses were ChemBridge_11084819, ChemBridge_80178394, and ChemBridge_17912340. Though all three hits scored a high glide score, MMGBSA, and favorable ADMET properties, ChemBridge_11084819 and ChemBrdige_17912340 showed higher stability and binding free energy. Moreover, these hits also featured stable H-bond interactions with the active loop of 6PGD with binding free energy comparable to substrate-bound complex. Therefore, the ChemBridge_11084819 and ChemBridge_17912340 moieties demonstrate to have high therapeutic potential against 6PGD in P. falciparum.Communicated by Ramaswamy H. Sarma.


Assuntos
Malária , Plasmodium falciparum , Humanos , Simulação de Acoplamento Molecular , Plasmodium falciparum/metabolismo , Fosfogluconato Desidrogenase/metabolismo , Conformação Molecular
16.
Comput Biol Chem ; 107: 107942, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37673012

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains a major threat to global health, with the emergence of multi-drug and extensively drug-resistant strains posing a serious challenge. Thereby, understanding the molecular basis of MTB virulence and disease pathogenesis is critical for developing effective therapeutic strategies. Targeting proteins involved in central metabolism has been recognized as a promising therapeutic approach to combat MTB. In this regard, the enzyme AckA of the acetate metabolic pathway which produces acetate from acetyl phosphate, is an important drug target for various pathogenic organisms. Therefore, this study aimed to identify potential AckA inhibitors through in silico methods, including molecular modeling, molecular dynamics simulation (MDS), and high-throughput virtual screening (HTVS) followed by ADMETox, MMGBSA, Density Functional Theory (DFT) calculations. HTVS of one million compounds from the ZINC database against AckA resulted in the top five hits (ZINC82048449, ZINC1219737510, ZINC1771921358, ZINC119699567, and ZINC1427100376) with better binding affinity and optimal binding free energy. MDS studies on complexes revealed that key residues, Asn195, Asp266, Phe267, Gly314, and Asn318 played a significant role in stable interactions of the top-ranked compounds to AckA. These outcomes provide insights into the optimal binding of the leads to inhibit the acetate pathway and aid in the rational design of novel therapeutic agents. Thus, the identified leads may act as promising compounds for targeting AckA and may serve as a potential therapeutic modality for treating TB. Our findings offer valuable insights into the inhibition of the acetate pathway, while also serving as a blueprint for rational drug design. The identified leads hold promise as compelling compounds for targeting AckA, thereby offering a potential therapeutic avenue for tackling TB. Thus, our study uncovers a pathway toward promising TB therapeutics by elucidating AckA inhibitors. By leveraging in silico methodologies, potent compounds that hold the potential to thwart AckA's role in MTB's acetate pathway have been unveiled. This breakthrough fosters optimism in the quest for novel and effective TB treatments, addressing a global health challenge with renewed vigor.


Assuntos
Mycobacterium tuberculosis , Antituberculosos/química , Acetato Quinase/metabolismo , Simulação de Dinâmica Molecular , Acetatos
17.
J Biomol Struct Dyn ; 41(24): 15177-15195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36898858

RESUMO

Human DNA topoisomerase II alpha (hTopIIα) is a classic chemotherapeutic drug target. The existing hTopIIα poisons cause numerous side effects such as the development of cardiotoxicity, secondary malignancies, and multidrug resistance. The use of catalytic inhibitors targeting the ATP-binding cavity of the enzyme is considered a safer alternative due to the less deleterious mechanism of action. Hence, in this study, we carried out high throughput structure-based virtual screening of the NPASS natural product database against the ATPase domain of hTopIIα and identified the five best ligand hits. This was followed by comprehensive validation through molecular dynamics simulations, binding free energy calculation and ADMET analysis. On stringent multilevel prioritization, we identified promising natural product catalytic inhibitors that showed high binding affinity and stability within the ligand-binding cavity and may serve as ideal hits for anticancer drug development.Communicated by Ramaswamy H. Sarma.


Assuntos
Produtos Biológicos , DNA Topoisomerases Tipo II , Humanos , Ligantes , Simulação de Acoplamento Molecular , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Simulação de Dinâmica Molecular , Adenosina Trifosfatases/metabolismo
18.
Nat Prod Res ; 37(9): 1589-1593, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35007180

RESUMO

Blumea lacera (Burm.f.) DC. (Asteraceae) is used in the traditional system of medicine for the treatment of inflammation or irritable bowel disease (IBD). In this study, B. lacera was collected from different geographical regions and oil was extracted by hydro-distillation and further chemo-profiled using GC-FID-MS. The major compounds identified were 2,5-dimethoxy-p-cymene (28.7-0.4%), ß-caryophyllene (25.5-0.5%), carvotanacetone (24.5-0.4%), chrysanthenone (21.9-9.8%) and 2,6-dimethyl phenol (11.4-1.8%). The constituents of B. lacera also showed marked qualitative and quantitative variations. The percent chemical similarity was observed to be in the range of 51.7% to 59.2% between the localities. Moreover, molecular modelling, membrane molecular dynamics simulations, target prediction were implemented to decipher the potential targets relevant to IBD. This inferred that all these major compounds could be potential drug moieties for treating IBD in terms of targeting h5HTR3A, thereby substantiating the traditional use of B. lacera for the treatment of IBD ailments.


Assuntos
Asteraceae , Doenças Inflamatórias Intestinais , Óleos Voláteis , Humanos , Óleos Voláteis/química , Simulação de Acoplamento Molecular , Asteraceae/química , Cromatografia Gasosa-Espectrometria de Massas , Doenças Inflamatórias Intestinais/tratamento farmacológico
19.
J Biomol Struct Dyn ; 41(14): 6603-6615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35971955

RESUMO

Laetiporus versisporus (Lloyd) Imazeki is an edible mushroom that grows abundantly in kodaikanal hills (India) during rainy season. Till now, there is a dearth of reports on chemoprofile and anticancer potential of this mushroom. In our recent study, L.versisporus ethanolic extract was reported to confer hepato-protective activity against DEN-induced HCC rats and also found to downregulate Bcl-2 activity. Moreover, the phytocompounds of a related species namely, L. sulphurous is also reported to potentially modulate Bcl-2 in glioblastoma. Hence, by this study, the bioactive compounds from L. versisporus ethanolic extract were profiled using LC-MS analysis and were virtually screened against ligand binding site of Bcl-2 in order to predict potential moieties with anticancer efficacies. Further, the top 3 potential hits were shortlisted based on MMGBSA score, ADME properties and stable complex formation during MD simulation. Amongst these hits, (6S)-1alpha, 25-dihydroxy vitaminD36,19-sulfurdioxide adduct was found to be highly promising in terms of binding affinity and ADME features comparable to the known inhibitor (DRO), thus shall be further probed for therapeutic efficacy using experimental validations for effective and natural mode of combating Bcl-2 mediated cancers.Communicated by Ramaswamy H. Sarma.


Chemoprofiling of Laetiporus versisporous ethanolic extract by LC-MS analysis.Anti-apoptotic Bcl-2 chosen as drug target based on documentation in similar Genus.Virtual screening of the profiled compounds vs. Bcl-2 inferred (6S)-1alpha, 25-dihydroxyvitamin D3 6,19-sulfur dioxide adduct as a potential novel inhibitor.This molecule also featured significant binding affinity and complex stability during MD comparable to DRO (known inhibitor).

20.
J Biomol Struct Dyn ; : 1-18, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063080

RESUMO

The therapeutic potential of small molecule kinase inhibitors in cancer treatment is well recognized. However, achieving selectivity remains a formidable challenge, primarily due to the structural similarity of ATP binding pockets among kinases. Allosteric inhibition, which involves targeting binding pockets beyond the ATP-binding site, provides a promising alternative to overcome this challenge. In this study, a meticulous approach was implemented to prioritize type 3 inhibitors for LIMK2, employing a range of techniques including Molecular Dynamics (MD) simulations, e-pharmacophore-guided High Throughput Virtual Screening (HTVS), MM/GBSA and ADMETox analyses, Density Functional Theory (DFT) calculations, and MM/PBSA investigations. The e-pharmacophore model identifies a hypothesis featuring five essential pharmacophoric elements (RRRAH). Through virtual screening of the ZINC compound database, we identified only five compounds that align with all four pharmacophoric features: ZINC1044382792, ZINC1433610865, ZINC1044109145, ZINC952869440, and ZINC490621334. These compounds not only exhibit higher binding affinity but also demonstrate favorable ADME/Tox profiles. Molecular dynamics simulations underscore the stability of hydrogen bond interactions with critical cryptic LIMK2 pocket residues, Asp469 and Arg474, only for two compounds: ZINC143361086 and ZINC1044382792. These compounds also exhibit superior occupancy interactions, as indicated by HOMO-LUMO analysis. Additionally, binding free energy calculations highlight the significant affinities of these two compounds when complexed with LIMK2: -83.491 ± 1.230 kJ/mol and -90.122 ± 1.248 kJ/mol for ZINC1044382792 and ZINC1433610862, respectively. Hence, this comprehensive investigation identifies ZINC1433610862 and ZINC1044382792 as prospective hits, representing promising leads for targeting LIMK2 in cancer therapeutics.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa