RESUMO
The pathogenicity of many bacteria, including Bacillus cereus and Staphylococcus aureus, depends on pore-forming toxins (PFTs), which cause the lysis of host cells by forming pores in the membranes of eukaryotic cells. Bioinformatic analysis revealed a region homologous to the Lys171-Gly250 sequence in hemolysin II (HlyII) from B. cereus in over 600 PFTs, which we designated as a "homologous peptide". Three ß-barrel PFTs were used for a detailed comparative analysis. Two of them-HlyII and cytotoxin K2 (CytK2)-are synthesized in Bacillus cereus sensu lato; the third, S. aureus α-toxin (Hla), is the most investigated representative of the family. Protein modeling showed certain amino acids of the homologous peptide to be located on the surface of the monomeric forms of these ß-barrel PFTs. We obtained monoclonal antibodies against both a cloned homologous peptide and a 14-membered synthetic peptide, DSFNTFYGNQLFMK, as part of the homologous peptide. The HlyII, CytK2, and Hla regions recognized by the obtained antibodies, as well as an antibody capable of suppressing the hemolytic activity of CytK2, were identified in the course of this work. Antibodies capable of recognizing PFTs of various origins can be useful tools for both identification and suppression of the cytolytic activity of PFTs.
Assuntos
Bacillus cereus , Toxinas Bacterianas , Proteínas Hemolisinas , Staphylococcus aureus , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Bacillus cereus/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Hemólise , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Modelos Moleculares , Animais , Anticorpos Monoclonais/química , Humanos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismoRESUMO
Hemolysin II (HlyII)-one of the pathogenic factors of Bacillus cereus, a pore-forming ß-barrel toxin-possesses a C-terminal extension of 94 amino acid residues, designated as the C-terminal domain of HlyII (HlyIICTD), which plays an important role in the functioning of the toxin. Our previous work described a monoclonal antibody (HlyIIC-20), capable of strain-specific inhibition of hemolysis caused by HlyII, and demonstrated the dependence of the efficiency of hemolysis on the presence of proline at position 324 in HlyII outside the conformational antigenic determinant. In this work, we studied 16 mutant forms of HlyIICTD. Each of the mutations, obtained via multiple site-directed mutagenesis leading to the replacement of amino acid residues lying on the surface of the 3D structure of HlyIICTD, led to a decrease in the interaction of HlyIIC-20 with the mutant form of the protein. Changes in epitope structure confirm the high conformational mobility of HlyIICTD required for the functioning of HlyII. Comparison of the effect of the introduced mutations on the effectiveness of interactions between HlyIICTD and HlyIIC-20 and a control antibody recognizing a non-overlapping epitope enabled the identification of the amino acid residues N339 and K340, included in the conformational antigenic determinant recognized by HlyIIC-20.