Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 16(1): 28, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29506533

RESUMO

BACKGROUND: Multiple RNA samples are frequently processed together and often mixed before multiplex sequencing in the same sequencing run. While different samples can be separated post sequencing using sample barcodes, the possibility of cross contamination between biological samples from different species that have been processed or sequenced in parallel has the potential to be extremely deleterious for downstream analyses. RESULTS: We present CroCo, a software package for identifying and removing such cross contaminants from assembled transcriptomes. Using multiple, recently published sequence datasets, we show that cross contamination is consistently present at varying levels in real data. Using real and simulated data, we demonstrate that CroCo detects contaminants efficiently and correctly. Using a real example from a molecular phylogenetic dataset, we show that contaminants, if not eliminated, can have a decisive, deleterious impact on downstream comparative analyses. CONCLUSIONS: Cross contamination is pervasive in new and published datasets and, if undetected, can have serious deleterious effects on downstream analyses. CroCo is a database-independent, multi-platform tool, designed for ease of use, that efficiently and accurately detects and removes cross contamination in assembled transcriptomes to avoid these problems. We suggest that the use of CroCo should become a standard cleaning step when processing multiple samples for transcriptome sequencing.


Assuntos
Biologia Computacional/normas , Bases de Dados Genéticas/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Filogenia , RNA Mensageiro/genética , Software/normas , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hidrozoários , RNA Mensageiro/análise , Especificidade da Espécie
2.
Bioinformatics ; 30(8): 1187-1189, 2014 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-24389659

RESUMO

MOTIVATION: DIYABC is a software package for a comprehensive analysis of population history using approximate Bayesian computation on DNA polymorphism data. Version 2.0 implements a number of new features and analytical methods. It allows (i) the analysis of single nucleotide polymorphism data at large number of loci, apart from microsatellite and DNA sequence data, (ii) efficient Bayesian model choice using linear discriminant analysis on summary statistics and (iii) the serial launching of multiple post-processing analyses. DIYABC v2.0 also includes a user-friendly graphical interface with various new options. It can be run on three operating systems: GNU/Linux, Microsoft Windows and Apple Os X. AVAILABILITY: Freely available with a detailed notice document and example projects to academic users at http://www1.montpellier.inra.fr/CBGP/diyabc CONTACT: estoup@supagro.inra.fr Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Genética Populacional/métodos , Polimorfismo de Nucleotídeo Único , Software , Teorema de Bayes , Biologia Computacional , Humanos , Repetições de Microssatélites , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa