RESUMO
New amphiphilic 1,4-DHP derivative C12-Man-Q with remoted cationic moieties at positions 2 and 6 was synthesised to study DNA delivery activity. The results were compared with data obtained for cationic 1,4-DHP derivative D19, which is known to be the most efficient one among the previously tested 1,4-DHP amphiphiles. We analysed the effects of C12-Man-Q concentration, complexation media, and complex/cell contact time on the gene delivery effectiveness and cell viability. Transmission electron microscopy data confirms that lipoplexes formed by the compound C12-Man-Q were quite uniform, vesicular-like structures with sizes of about 50 nm, and lipoplexes produced by compound D19 were of irregular shapes, varied in size in the range of 25â»80 nm. Additionally, confocal microscopy results revealed that both amphiphiles effectively delivered green fluorescent protein expression plasmid into BHK-21 cells and produced a fluorescent signal with satisfactory efficiency, although compound C12-Man-Q was more cytotoxic to the BHK-21 cells with an increase of concentration. It can be concluded that optimal conditions for C12-Man-Q lipoplexes delivery in BHK-21 cells were the serum free media without 0.15 M NaCl, at an N/P ratio of 0.9. Compound D19 showed higher transfection efficiency to transfect BHK-21 and Cos-7 cell lines, when transfecting active proliferating cells. Although D19 was not able to transfect all studied cell lines we propose that it could be cell type specific. The compound C12-Man-Q showed modest delivery activity in all used cell lines, and higher activity was obtained in the case of H2-35 and B16 cells. The transfection efficiency in cell lines MCF-7, HeLa, and Huh-7 appears to be comparable to the reference compound D19 and minimal in the HepG2 cell line.
Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Tensoativos/química , Tensoativos/síntese química , Animais , Cátions , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/química , Di-Hidropiridinas/toxicidade , Humanos , Concentração Osmolar , Plasmídeos/genética , Tensoativos/toxicidade , TransfecçãoRESUMO
Semliki Forest virus (SFV) is a potential cancer gene therapy vector capable of providing high and transient expression of heterologous proteins in mammalian cells. However, SFV has shown suboptimal transduction levels in several cancer cell types as well as wide biodistribution of SFV has been observed after in vivo applications. Magnetic nanoparticles (MNPs) have been shown to increase cell transduction with several viral vectors in vitro under an external magnetic field and enhance magnetically guided viral vector delivery. Here, we examined a panel of MNPs for enhanced cancer cell transduction with SFV vector. Magneto-transduction using positively charged MNPs increased Semliki Forest virus transduction in TS/A mouse mammary carcinoma cells in vitro in the presence of fetal bovine serum. Positively charged MNPs efficiently captured SFV particles independently of capturing medium, and MNPs-SFV complexes were successfully separated from suspension by magnetic precipitation. These results reveal the potential application of MNPs for enhanced gene delivery by SFV vector as well as proposes magnetic precipitation for efficient concentration of SFV particles from different media.
Assuntos
Nanopartículas de Magnetita , Vírus da Floresta de Semliki/genética , Transdução Genética/métodos , Animais , Bovinos , Linhagem Celular Tumoral , Feminino , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Neoplasias Mamárias Experimentais/virologia , CamundongosRESUMO
New amphiphilic pyridine derivatives containing dodecyloxycarbonyl substituents at positions 3 and 5 and cationic moieties at positions 2 and 6 have been designed and synthesised. Compounds of this type can be considered as synthetic lipids. The corresponding 1,4-dihydropyridine (1,4-DHP) derivatives have earlier been proposed as a promising tool for plasmid DNA (pDNA) delivery in vitro. In this work studies of the self-assembling properties of amphiphilic pyridine derivatives leading to the formation of liposomes, determination of particle size, zeta-potential and critical micelle concentration (CMC) with dynamic light scattering (DLS) measurements are described. Furthermore, thermal analysis of pyridine derivatives was performed using thermogravimetry analysis (TGA) and differential thermal analysis (DTA) as well as the ability to deliver the pEGFP-C1 plasmid DNA (that encodes GFP reporter) into the Baby hamster kidney-derived (BHK-21) cell line was used for evaluation of gene delivery properties. We have revealed that the new pyridine derivatives possessed self-assembling properties which were proved by formation of nanoparticles with the average size from 115 to 743nm, the zeta-potentials in the range of 48-79mV and CMC values in the range of 2-67µM. DTA data showed that all processes were endothermic for all compounds. Additionally, we established that among the tested pyridines the representatives with N-methylpyrrolidinium or pyridinium moieties as cationic head-group at the positions 2 and 6 possessed higher pEGFP-C1 transfection activity into the BHK-21 cell line. Nevertheless, the obtained results indicated that correlation of the physicochemical, structural properties and gene delivery activities of the tested compounds were not completely elucidated yet. On the other hand, the synthesised pyridines as possible metabolites of promising delivery systems on the 1,4-DHP core possessed lower pDNA transfection activity than the corresponding 1,4-DHP amphiphiles.