Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(4): 247, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246755

RESUMO

The organic soils (Histosols) are important as filters for organic and inorganic pollutants, mainly because they are usually located on the banks of rivers and lakes. The aim of this study was to evaluate which functional groups of soil organic matter (SOM) most contribute for the Pb2+ and H2AsO4- adsorption in Histosols. This study used 20 samples (160 ~ 290 g kg-1 of organic carbon (OC) collected at 0-5 cm in five areas of Histosols from Curitiba, Southern of Brazil. Hydrofluoric acid (10%) was used to solubilize minerals to concentrate organic matter (391 to 510 g kg-1 of OC) in the samples. Samples having been submitted to pyrolysis in combination with gas chromatography (Py-GC/MS) that identified 186 organic compounds grouped based on their chemical similarity. The samples were saturated separately with Pb2+ and H2AsO4- under acid conditions (pH 4.0). The exchangeable (electrostatic interactions with SOM charges) and nonexchangeable (complexed to SOM) Pb2+ and H2AsO4- were determined for sequential methods (Ca(NO3)2 and EPA 3051A, respectively. Positive correlations occurred between exchangeable Pb2+ and phenolic compounds (r = 0.6, p < 0.05), lignin phenols (r = 0.5, p < 0.05), and sterols (r = 0.6, p < 0.05). For nonexchangeable Pb2+, there was a significant correlation with alkenes (r = 0.8, p < 0.01), alkanes (r = 0.8, p < 0.01), and methyl ketones (r = 0.7 p < 0.01). The exchangeable H2AsO4- is related to alkanes, alkenes, and methyl ketones. Therefore, in acid Histosols constituted of aliphatic organic matter tend to have less environmental fragility, due to the lesser transportation of these contaminants to other compartments like surface and subsurface waters.


Assuntos
Arsênio , Poluentes do Solo , Adsorção , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas , Chumbo , Pirólise , Solo/química , Poluentes do Solo/química
2.
Glob Chang Biol ; 27(19): 4575-4591, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34118093

RESUMO

Amazonian rainforests, once thought to be pristine wilderness, are increasingly known to have been widely inhabited, modified, and managed prior to European arrival, by human populations with diverse cultural backgrounds. Amazonian Dark Earths (ADEs) are fertile soils found throughout the Amazon Basin, created by pre-Columbian societies with sedentary habits. Much is known about the chemistry of these soils, yet their zoology has been neglected. Hence, we characterized soil fertility, macroinvertebrate communities, and their activity at nine archeological sites in three Amazonian regions in ADEs and adjacent reference soils under native forest (young and old) and agricultural systems. We found 673 morphospecies and, despite similar richness in ADEs (385 spp.) and reference soils (399 spp.), we identified a tenacious pre-Columbian footprint, with 49% of morphospecies found exclusively in ADEs. Termite and total macroinvertebrate abundance were higher in reference soils, while soil fertility and macroinvertebrate activity were higher in the ADEs, and associated with larger earthworm quantities and biomass. We show that ADE habitats have a unique pool of species, but that modern land use of ADEs decreases their populations, diversity, and contributions to soil functioning. These findings support the idea that humans created and sustained high-fertility ecosystems that persist today, altering biodiversity patterns in Amazonia.


Assuntos
Ecossistema , Solo , Agricultura , Biodiversidade , Humanos , Microbiologia do Solo
3.
Environ Sci Technol ; 51(3): 1330-1339, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28102075

RESUMO

Insight in the molecular structure of humic acid (HA) and fulvic acid (FA) can contribute to identify relationships between their molecular properties, and further our quantitative abilities to model important organic matter functions such as metal complexation and association with mineral surfaces. Pyrolysis gas chromatography/mass spectrometry (Py-GC-MS) is used to compare the molecular composition of HA and FA. A systematic comparison was obtained by using samples from different environmental sources, including solid and aqueous samples from both natural and waste sources. The chemical signature of the pyrolysates was highly variable and no significant difference between HA and FA was found for major chemical groups, that is, carbohydrates, phenols, benzenes, and lignin phenols, together accounting for 62-96% of all quantified pyrolysis products. However, factor analysis showed that within each sample, FAs consistently differed from corresponding HAs in a larger contribution from mono- and polyaromatic hydrocarbons and heterocyclic hydrocarbons, together accounting for 3.9-44.5% of the quantified pyrolysis products. This consistent difference between FAs and corresponding HAs, suggests that their binding properties may, in addition to the carboxyl and phenolic groups, be influenced by the molecular architecture. Py-GC-MS may thus contribute to identify relationships between HA and FA binding- and molecular-properties.


Assuntos
Benzopiranos/química , Substâncias Húmicas , Meio Ambiente , Cromatografia Gasosa-Espectrometria de Massas , Lignina , Compostos Orgânicos
4.
J Environ Manage ; 197: 50-62, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28324781

RESUMO

Wetlands are important ecosystems characterized by redoximorphic environments producing typical soil forming processes and organic carbon accumulation. Assessments and management of these areas are dependent on knowledge about soil characteristics and variability. By reflectance spectroscopy, information about soils can be obtained since their spectral behaviors are directly related to their chemical, physical, and mineralogical properties reflecting the pedogenetic processes and environment conditions. Our aims were: (a) to characterize the main soil classes of wetlands regarding their spectral behaviors in VIS-NIR-SWIR (350-2500 nm) and relate them to pedogenesis and environmental conditions, (b) to determine spectral ranges (bands) with greater expression of the main soil properties, (c) to identify spectral variations and similarities between hydromorphic soils from wetlands and other soils under different moisture conditions, and (d) to propose spectral models to quantify some chemical and physical soil properties used as environmental quality indicators. Nine soil profiles from the Pantanal region (Mato Grosso State, Brazil) and one from the Serra do Espinhaço Meridional (Minas Gerais State, Brazil) were investigated. Spectral morphology interpretation allowed identifying horizon differences regarding shape, absorption features and reflectance intensity. Some pedogenetic processes of wetland soils related to organic carbon accumulation and oxide iron variation were identified by spectra. Principal Component Analysis allowed discriminating soils from wetland and outside this area (oxidic environment). Quantification of organic carbon was possible with R2 of 0.90 and low error. Quantification of clay content was masked by soils with organic carbon content over 2% where it was not possible to quantify with high R2 and low error both properties when dataset has soil samples with high organic carbon content. By reflectance spectroscopy, important characteristics of wetland soils can be identified and used to distinguish from soils of different environments at low costs, reduced time, and with environmental quality.


Assuntos
Monitoramento Ambiental , Solo , Áreas Alagadas , Brasil , Carbono
5.
Environ Microbiol ; 15(4): 1103-14, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22816485

RESUMO

Cyanobacteria act as primary producers of carbon and nitrogen in nutrient-poor ecosystems such as mangroves. This important group of microorganisms plays a critical role in sustaining the productivity of mangrove ecosystems, but the structure and function of cyanobacteria assemblages can be perturbed by anthropogenic influences. The aim of this work was to assess the community structure and ecological drivers that influence the cyanobacterial community harboured in two Brazilian mangrove soils, and examine the long-term effects of oil contamination on these keystone species. Community fingerprinting results showed that, although cyanobacterial communities are distinct between the two mangroves, the structure and diversity of the assemblages exhibit similar responses to environmental gradients. In each ecosystem, cyanobacteria occupying near-shore areas were similar in composition, indicating importance of marine influences for structuring the community. Analysis of 16S rRNA sequences revealed the presence of diverse cyanobacterial communities in mangrove sediments, with clear differences among mangrove habitats along a transect from shore to forest. While near-shore sites in both mangroves were mainly occupied by Prochlorococcus and Synechococcus genera, sequences retrieved from other mangrove niches were mainly affiliated with uncultured cyanobacterial 16S rRNA. The most intriguing finding was the large number of potentially novel cyanobacteria 16S rRNA sequences obtained from a previously oil-contaminated site. The abundance of cyanobacterial 16S rRNA sequences observed in sites with a history of oil contamination was significantly lower than in the unimpacted areas. This study emphasized the role of environmental drivers in determining the structure of cyanobacterial communities in mangrove soils, and suggests that anthropogenic impacts may also act as ecological filters that select cyanobacterial taxa. These results are an important contribution to our understanding of the composition and relative abundance of previously poorly described cyanobacterial assemblages in mangrove ecosystems.


Assuntos
Cianobactérias/classificação , Cianobactérias/genética , Ecossistema , Variação Genética/genética , Microbiologia do Solo , Áreas Alagadas , Sequência de Bases , Brasil , RNA Ribossômico/genética , Árvores/genética
6.
An Acad Bras Cienc ; 85(4): 1329-44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24346795

RESUMO

The presented paper considered the pollen morphology of thirteen species belonging to seven genera of the Fabaceae family occurring in the Pau-de-Fruta Special Protection Area (SPA), Diamantina, state of Minas Gerais, Brazil. The pollen grains of six species of Chamaecrista [C. cathartica (Mart.) H.S. Irwin & Barneby, C. debilis Vogel, C. flexuosa (L.) Greene, C. hedysaroides (Vogel) H.S. Irwin & Barneby, C. glandulosa (L.) Greene, and C. papillata H.S. Irwin & Barneby] have a similar morphology, characterized by three long colporated apertures with a central constriction. The species share specific morphological features regarding pollen size, endoaperture type (circular, lalongate or lolongate) and SEM ornamentation patterns of the exine (rugulate with perforations or perforate). Andira fraxinifolia Benth., Dalbergia miscolobium Benth, Galactia martii DC, Periandra mediterranea (Vell.) Taub., Senna rugosa (G.Don) H.S. Irwin & Barneby and Zornia diphylla (L.) Pers showed different pollen types in small to large size; oblate spheroidal to prolate form; colpus or colporus apertures; circular, lalongate or lolongate endoapertures and distinctive SEM ornamentation patterns of the exine (perforate, microreticulate, reticulate or rugulate with perforations). Only Stryphnodendron adstringens (Mart.) Coville presents polyads. The pollen morphology variation of these species allowed the Fabaceae family to be characterized as eurypalynous in the SPA Pau-de-Fruta.


Assuntos
Fabaceae/anatomia & histologia , Pólen/anatomia & histologia , Brasil , Fabaceae/classificação , Fabaceae/ultraestrutura , Microscopia Eletrônica de Varredura , Pólen/ultraestrutura , Especificidade da Espécie
7.
Sci Total Environ ; 872: 162234, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36791854

RESUMO

Complexation of dissolved organic matter (DOM) with cations and minerals contributes to the stabilization of carbon in soils, and can enable the transport of metals in the environment. Hence, a proper understanding of mechanisms that control DOM binding properties in the soil is important for major environmental challenges, such as climate change and stream pollution. However, the role of DOM source in those mechanisms remains understudied. Here, we consider poorly drained tropical Podzols as a model environment to isolate effects of aluminium and DOM on sorption and desorption processes in podzolisation. We collected E- and Bh-horizons from a Brazilian coastal Podzol under tropical rainforest to conduct a column experiment, and percolated the columns with DOM collected from a stream (Stream), peat water (Peat), litter (Litter) and charred litter (Char). To quantify sorption and desorption from the columns, leachates were analysed for DOC content, aluminium content, pH, and the amount of fulvic acid relative to humic acid. The results showed large differences in DOC retention between DOM-types, which were consistent over all columns. Retention of DOC in the column varied between 25 % and 92 % for DOM-type Stream, between 33 % and 63 % for DOM-type Peat, between 22 % and 47 % for DOM-type Litter, and between 8 % and 49 % for DOM-type Char. Similarly, desorption from columns with B-horizon material highly differed between DOM-types. Percolation with DOM-types Stream and Peat caused a release of native DOC from B columns that was higher than in those percolated with water only. On the other hand, percolation of B columns with DOM-types Litter and Char caused a net DOC retention. These differences reflect that certain DOM-types hindered desorption, while other DOM-types caused active desorption. The large differences in sorption/desorption between DOM-types implies that changes in environmental conditions may highly influence the fate of soil carbon in Podzols.

8.
Sci Total Environ ; 826: 154144, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35227726

RESUMO

The sorption of dissolved organic matter (DOM) depends on its interaction with the soil matrix. In hydromorphic podzols, DOM reacts mainly with aluminium (Al), which is responsible for the formation of the Bh-horizon in the subsoil. In this work, we investigated whether the retention of DOM in the soil during the podzolization process is selective in relation to the molecular composition of DOM. A column experiment was conducted to study the selective retention of sorption and desorption processes under controlled conditions. Materials used in the column experiment were representative for Brazilian coastal podzols under tropical rainforest. Materials were collected from this tropical coastal podzol ecosystem, and included soil from E- and Bh-horizons, and DOM from a stream (Stream), peat water (Peat), litter (Litter) and charred litter (Char). To evaluate selective retention of DOM, both the initial DOM and its leachates were analyzed by Fourier transform infrared spectra absorption (FTIR) and pyrolysis gas-chromatography/mass spectrometry (Py-GC/MS). The results showed preferential retention of DOM associated with biopolymers for soil columns with E-horizon material (E), E with Al nitrate (E-n), E with kaolinite (E-k) and E with gibbsite (E-h), except for Char. The composition of leachates after percolation through B horizon columns was mainly determined by desorption, and had a relatively large contribution from phenolic and carboxylic groups associated with Al and low molecular weight aromatic and N-containing pyrolysis products, while products from macromolecular materials such as cellulose were selectively retained in the columns for all DOM types. DOM from the Stream (taken during the rainy season) resembled that of desorbed OM from the B columns, reinforcing substantial desorption in the field as well. Our results suggest that sorption and desorption of OM in the hydromorphic Bh-horizon is continuous and that the selectivity of sorption is dependent on DOM source.


Assuntos
Matéria Orgânica Dissolvida , Adsorção , Ecossistema , Pirólise , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Sci Justice ; 59(6): 635-642, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31606101

RESUMO

Wetlands near urban centers may be more isolated areas and can be chosen for the disposal of bodies or used as a crime scene. The predominant soils in these areas usually have a high content of organic matter (OM), classified as Histosols. Soil organic matter (SOM) is composed of many different compounds that can be identified by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The study aimed to use Py-GC/MS to classify small amounts of organic soil in a forensic context. We sampled Histosols from five representative sites of Curitiba, Brazil. The molecular composition of the samples was determined by byPy-GC/MS. The factor analysis was carried out, and the factor scores showed a clear differentiation between the sites. Compounds indicative of relatively fresh plant material was separated from more recalcitrant and charred material. Py-GC/MS has the potential to be a useful tool to study the composition of SOM in Histosols to track the trace sample collected from a crime suspect.

10.
PLoS One ; 12(5): e0178038, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542442

RESUMO

Anthrosols known as Amazonian Dark Earth (ADE) have borne witness to the intensification of sedentary patterns and the demographic increase in Central Amazon. As a result, a recurring pattern has been observed of mounds with ADE arising from domestic activities and the disposal of waste. The objective of this research was to demonstrate the relationship of these anthropic activities with pedogenetic formation processes of ADE in the municipality of Iranduba, Brazil. Disturbed and undisturbed soil samples were taken from two areas of ADE (pretic horizon) and from a non-anthropic pedon. Physical, chemical, micromorphological and SEM-EDS analyses were performed. The coarse material of the pretic horizons consisted predominantly of quartz, iron nodules, ceramics and charcoal fragments, and the fine material is organo-mineral. There was a direct relationship between the color of pretic horizons and the number of charcoal fragments. The thickness of the ADE results from the redistribution of charcoal at depth through bioturbation, transforming subsurface horizons into anthropic horizons. ADE presents granular microaggregates of geochemical and zoogenetic origin. Degradation of iron nodules is intensified in pretic horizons, promoting a reverse pedogenic process contributing to the xanthization process. Surprisingly the anthropic activities also favor clay dispersion and argilluviation; clay coatings on the ceramic fragments and in the pores demonstrate that this is a current process. Processes identified as contributing to ADE genesis included: i) addition of organic residues and ceramic artifacts (cumulization) with the use of fire; ii) mechanical action of humans, roots and macrofauna (bioturbation); iii) melanization of deeper horizons as a result of bioturbation; iv) argilluviation and degradation of iron nodules. This study offers new support to archaeological research in respect to ADE formation processes in Central Amazon and confirmed the hypothesis that ancient anthropic activities may trigger and/or accelerate pedogenetic processes previously credited only to natural causes.


Assuntos
Solo , Silicatos de Alumínio/análise , Brasil , Cerâmica/análise , Carvão Vegetal/análise , Argila , Cor , Incêndios , Humanos , Ferro/análise , Raízes de Plantas , Quartzo/análise , Solo/química , Solo/classificação , Microbiologia do Solo
11.
PLoS One ; 12(7): e0179197, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28700595

RESUMO

Vegetated mounds are an important geomorphological feature of the Pantanal, where the influence of floods dictates not only hydropedological processes, but also the distribution and ecology of the flora and fauna. This work aimed to identify factors and processes that influence the formation and spatial distribution of the mounds, which are commonly associated with termite activity. In order to characterize pedological processes, macro and micro morphological descriptions, satellite image interpretation, dating of the sandy sedimentary material using OSL and carbon dating using 14C AMS were carried out. This dating of the materials indicates that the sediments in which the soils were formed were deposited during the Pleistocene, while the carbonates are from the Holocene. The basin-like format of the laminar structures suggests that part of the more clayey material was deposited in lacustrine environments. The more humid climate in the Holocene intensified argilluviation, which at an advanced stage, led to a more pronounced textural gradient, reducing drainage and leading to ferrolysis and thickening of the E horizon. Besides pedogenic processes, more erosive flooding during the Holocene began reducing and rounding the landscape's more elevated structures (paleolevees). In the final stage, these structures were occupied by termites to shelter from flooding. Thereafter, the bio-cementation action of the termite nests has increased the resistance of the vegetated mounds to processes of erosion.


Assuntos
Sedimentos Geológicos/química , Isópteros/fisiologia , Datação Radiométrica/métodos , Imagens de Satélites/métodos , Solo/química , Áreas Alagadas , Animais , Brasil , Fenômenos Geológicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa