Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Exp Lung Res ; 49(1): 152-164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37584484

RESUMO

Purpose: Growth hormone-releasing hormone (GHRH) is a 44-amino acid peptide that regulates growth hormone (GH) secretion. We hypothesized that GHRH receptor (GHRH-R) in alveolar type 2 (AT2) cells could modulate pro-inflammatory and possibly subsequent pro-fibrotic effects of lipopolysaccharide (LPS) or cytokines, such that AT2 cells could participate in lung inflammation and fibrosis. Methods: We used human alveolar type 2 (iAT2) epithelial cells derived from induced pluripotent stem cells (iPSC) to investigate how GHRH-R modulates gene and protein expression. We tested iAT2 cells' gene expression in response to LPS or cytokines, seeking whether these mechanisms caused endogenous production of pro-inflammatory molecules or mesenchymal markers. Quantitative real-time PCR (RT-PCR) and Western blotting were used to investigate differential expression of epithelial and mesenchymal markers. Result: Incubation of iAT2 cells with LPS increased expression of IL1-ß and TNF-α in addition to mesenchymal genes, including ACTA2, FN1 and COL1A1. Alveolar epithelial cell gene expression due to LPS was significantly inhibited by GHRH-R peptide antagonist MIA-602. Incubation of iAT2 cells with cytokines like those in fibrotic lungs similarly increased expression of genes for IL1-ß, TNF-α, TGFß-1, Wnt5a, smooth muscle actin, fibronectin and collagen. Expression of mesenchymal proteins, such as N-cadherin and vimentin, were also elevated after prolonged exposure to cytokines, confirming epithelial production of pro-inflammatory molecules as an important mechanism that might lead to subsequent fibrosis. Conclusion: iAT2 cells clearly expressed the GHRH-R. Exposure to LPS or cytokines increased iAT2 cell production of pro-inflammatory factors. GHRH-R antagonist MIA-602 inhibited pro-inflammatory gene expression, implicating iAT2 cell GHRH-R signaling in lung inflammation and potentially in fibrosis.


Assuntos
Pneumonia , Fibrose Pulmonar , Humanos , Células Epiteliais Alveolares/metabolismo , Fator de Necrose Tumoral alfa , Lipopolissacarídeos/farmacologia , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Inflamação , Citocinas
2.
Proc Natl Acad Sci U S A ; 115(47): 12028-12033, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30373845

RESUMO

The effects of the growth hormone-releasing hormone (GHRH) agonist MR409 on various human cancer cells were investigated. In H446 small cell lung cancer (SCLC) and HCC827 and H460 (non-SCLC) cells, MR409 promoted cell viability, reduced cell apoptosis, and induced the production of cellular cAMP in vitro. Western blot analyses showed that treatment of cancer cells with MR409 up-regulated the expression of cyclins D1 and D2 and cyclin-dependent kinases 4 and 6, down-regulated p27kip1, and significantly increased the expression of the pituitary-type GHRH receptor (pGHRH-R) and its splice-variant (SV1). Hence, in vitro MR409 exerts agonistic action on lung cancer cells in contrast to GHRH antagonists. However, in vivo, MR409 inhibited growth of lung cancers xenografted into nude mice. MR409 given s.c. at 5 µg/day for 4 to 8 weeks significantly suppressed growth of HCC827, H460, and H446 tumors by 48.2%, 48.7%, and 65.6%, respectively. This inhibition of tumor growth by MR409 was accompanied by the down-regulation of the expression of pGHRH-R and SV1 in the pituitary gland and tumors. Tumor inhibitory effects of MR409 in vivo were also observed in other human cancers, including gastric, pancreatic, urothelial, prostatic, mammary, and colorectal. This inhibition of tumor growth parallel to the down-regulation of GHRH-Rs is similar and comparable to the suppression of sex hormone-dependent cancers after the down-regulation of receptors for luteinizing hormone-releasing hormone (LHRH) by LHRH agonists. Further oncological investigations with GHRH agonists are needed to elucidate the underlying mechanisms.


Assuntos
Receptores de Neuropeptídeos/efeitos dos fármacos , Receptores de Hormônios Reguladores de Hormônio Hipofisário/efeitos dos fármacos , Sermorelina/análogos & derivados , Processamento Alternativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Hormônio Liberador de Hormônio do Crescimento/agonistas , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Humanos , Camundongos , Camundongos Nus , Splicing de RNA/efeitos dos fármacos , Sermorelina/metabolismo , Sermorelina/farmacologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
3.
Int J Cancer ; 142(11): 2394-2404, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29435973

RESUMO

We investigated the effects of novel antagonists of growth hormone releasing hormone (GHRH)-MIA602 and MIA690-on three human small cell lung cancer (SCLC) lines (H446, DMS53 and H69) and two non-SCLC (NSCLC) lines (HCC827 and H460). In vitro exposure of cancer cells to these GHRH antagonists significantly inhibited cell viability, increased cell apoptosis, decrease cellular levels of cAMP and reduced cell migration. In vivo, the antagonists strongly inhibited tumor growth in xenografted nude mice models. Subcutaneous administration of MIA602 at the dose of 5 µg/day for 4-8 weeks reduced the growth of HCC827, H460 and H446 tumors by 69.9%, 68.3% and 53.4%, respectively, while MIA690 caused a reduction of 76.8%, 58.3% and 54.9%, respectively. Western blot and qRT-PCR analyses demonstrated a downregulation of expression of the pituitary-type GHRH-R and its splice-variant, cyclinD1/2, cyclin-dependent kinase4/6, p21-activated kinase-1, phosphorylation of activator of transcription 3 and cAMP response element binding protein; and an upregulation of expression of E-cadherin, ß-catenin and P27kip1 in cancer cells and in xenografted tumor tissues. The study demonstrates the involvement of GHRH antagonists in multiple signaling pathways in lung cancers. Our findings suggest the merit of further investigation with these GHRH antagonists on the management of both SCLC and NSCLC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Sermorelina/análogos & derivados , Carcinoma de Pequenas Células do Pulmão/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Humanos , Camundongos , Camundongos Nus , Fator de Transcrição STAT3/metabolismo , Sermorelina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Br J Haematol ; 181(4): 476-485, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29663325

RESUMO

Growth hormone-releasing hormone (GHRH) is secreted by the hypothalamus and acts on the pituitary gland to stimulate the release of growth hormone (GH). GHRH can also be produced by human cancers, in which it functions as an autocrine/paracrine growth factor. We have previously shown that synthetic antagonistic analogues of GHRH are able to successfully suppress the growth of 60 different human cancer cell lines representing over 20 cancers. Nevertheless, the expression of GHRH and its receptors in leukaemias has never been examined. Our study demonstrates the presence of GHRH receptor (GHRH-R) on 3 of 4 human acute myeloid leukaemia (AML) cell lines-K-562, THP-1, and KG-1a-and significant inhibition of proliferation of these three cell lines in vitro following incubation with the GHRH antagonist MIA-602. We further show that this inhibition of proliferation is associated with the upregulation of pro-apoptotic genes and inhibition of Akt signalling in leukaemic cells. Treatment with MIA-602 of mice bearing xenografts of these human AML cell lines drastically reduced tumour growth. The expression of GHRH-R was further confirmed in 9 of 9 samples from patients with AML. These findings offer a new therapeutic approach to this malignancy and suggest a possible role of GHRH-R signalling in the pathology of AML.


Assuntos
Apoptose/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Leucemia Mieloide Aguda/tratamento farmacológico , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Hormônios Reguladores de Hormônio Hipofisário/antagonistas & inibidores , Sermorelina/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Animais , Feminino , Humanos , Células K562 , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sermorelina/farmacologia , Células THP-1 , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Proc Natl Acad Sci U S A ; 112(44): 13651-6, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26474831

RESUMO

Agonists of growth hormone-releasing hormone (GHRH) have been previously reported to promote growth, function, and engraftment of islet cells following transplantation. Here we evaluated recently synthesized GHRH agonists on the proliferation and biological functions of rat pancreatic ß-cell line (INS-1) and islets. In vitro treatment of INS-1 cells with GHRH agonists increased cell proliferation, the expression of cellular insulin, insulin-like growth factor-1 (IGF1), and GHRH receptor, and also stimulated insulin secretion in response to glucose challenge. Exposure of INS-1 cells to GHRH agonists, MR-356 and MR-409, induced activation of ERK and AKT pathways. Agonist MR-409 also significantly increased the levels of cellular cAMP and the phosphorylation of cAMP response element binding protein (CREB) in INS-1 cells. Treatment of rat islets with agonist, MR-409 significantly increased cell proliferation, islet size, and the expression of insulin. In vivo daily s.c. administration of 10 µg MR-409 for 3 wk dramatically reduced the severity of streptozotocin (STZ)-induced diabetes in nonobese diabetic severe combined immunodeficiency (NOD/SCID) mice. The maximal therapeutic benefits with respect to the efficiency of engraftment, ability to reach normoglycemia, gain in body weight, response to high glucose challenge, and induction of higher levels of serum insulin and IGF1 were observed when diabetic mice were transplanted with rat islets preconditioned with GHRH agonist, MR-409, and received additional treatment with MR-409 posttransplantation. This study provides an improved approach to the therapeutic use of GHRH agonists in the treatment of diabetes mellitus.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/agonistas , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ratos , Estreptozocina
6.
Proc Natl Acad Sci U S A ; 111(2): 781-6, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24379381

RESUMO

The dismal prognosis of malignant brain tumors drives the development of new treatment modalities. In view of the multiple activities of growth hormone-releasing hormone (GHRH), we hypothesized that pretreatment with a GHRH agonist, JI-34, might increase the susceptibility of U-87 MG glioblastoma multiforme (GBM) cells to subsequent treatment with the cytotoxic drug, doxorubicin (DOX). This concept was corroborated by our findings, in vivo, showing that the combination of the GHRH agonist, JI-34, and DOX inhibited the growth of GBM tumors, transplanted into nude mice, more than DOX alone. In vitro, the pretreatment of GBM cells with JI-34 potentiated inhibitory effects of DOX on cell proliferation, diminished cell size and viability, and promoted apoptotic processes, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide proliferation assay, ApoLive-Glo multiplex assay, and cell volumetric assay. Proteomic studies further revealed that the pretreatment with GHRH agonist evoked differentiation decreasing the expression of the neuroectodermal stem cell antigen, nestin, and up-regulating the glial maturation marker, GFAP. The GHRH agonist also reduced the release of humoral regulators of glial growth, such as FGF basic and TGFß. Proteomic and gene-expression (RT-PCR) studies confirmed the strong proapoptotic activity (increase in p53, decrease in v-myc and Bcl-2) and anti-invasive potential (decrease in integrin α3) of the combination of GHRH agonist and DOX. These findings indicate that the GHRH agonists can potentiate the anticancer activity of the traditional chemotherapeutic drug, DOX, by multiple mechanisms including the induction of differentiation of cancer cells.


Assuntos
Tratamento Farmacológico/métodos , Glioblastoma/tratamento farmacológico , Hormônio Liberador de Hormônio do Crescimento/análogos & derivados , Hormônio Liberador de Hormônio do Crescimento/agonistas , Fragmentos de Peptídeos/farmacologia , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Ensaio de Imunoadsorção Enzimática , Proteína Glial Fibrilar Ácida , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Imuno-Histoquímica , Camundongos , Camundongos Nus , Proteínas do Tecido Nervoso/metabolismo , Nestina/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
7.
Proc Natl Acad Sci U S A ; 110(7): 2617-22, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23359692

RESUMO

Gastrin releasing-peptide (GRP) is a potent growth factor in many malignancies. Benign prostatic hyperplasia (BPH) is a progressive age-related proliferation of glandular and stromal tissues; various growth factors and inflammatory processes are involved in its pathogenesis. We have demonstrated that potent antagonists of GRP inhibit growth of experimental human tumors including prostate cancer, but their effect on models of BPH has not been studied. Here, we evaluated the effects of GRP antagonist RC-3940-II on viability and cell volume of BPH-1 human prostate epithelial cells and WPMY-1 prostate stromal cells in vitro, and in testosterone-induced BPH in Wistar rats in vivo. RC-3940-II inhibited the proliferation of BPH-1 and WPMY-1 cells in a dose-dependent manner and reduced prostatic cell volume in vitro. Shrinkage of prostates was observed after 6 wk of treatment with RC-3940-II: a 15.9% decline with 25 µg/d; and a 18.4% reduction with 50 µg/d (P < 0.05 for all). Significant reduction in levels of proliferating cell nuclear antigen, NF-κß/p50, cyclooxygenase-2, and androgen receptor was also seen. Analysis of transcript levels of genes related to growth, inflammatory processes, and signal transduction showed significant changes in the expression of more than 90 genes (P < 0.05). In conclusion, GRP antagonists reduce volume of human prostatic cells and lower prostate weight in experimental BPH through direct inhibitory effects on prostatic GRP receptors. GRP antagonists should be considered for further development as therapy for BPH.


Assuntos
Bombesina/análogos & derivados , Tamanho Celular/efeitos dos fármacos , Peptídeo Liberador de Gastrina/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Próstata/citologia , Hiperplasia Prostática/tratamento farmacológico , Análise de Variância , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Bombesina/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 2/sangue , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Humanos , Masculino , NF-kappa B/sangue , Antígeno Nuclear de Célula em Proliferação/sangue , Próstata/efeitos dos fármacos , Hiperplasia Prostática/induzido quimicamente , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptores Androgênicos/sangue , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testosterona/toxicidade , Sais de Tetrazólio , Tiazóis
8.
Proc Natl Acad Sci U S A ; 108(9): 3755-60, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21321192

RESUMO

Growth hormone-releasing hormone (GHRH), a hypothalamic polypeptide, acts as a potent autocrine/paracrine growth factor in many cancers. Benign prostatic hyperplasia (BPH) is a pathologic proliferation of prostatic glandular and stromal tissues; a variety of growth factors and inflammatory processes are inculpated in its pathogenesis. Previously we showed that potent synthetic antagonists of GHRH strongly inhibit the growth of diverse experimental human tumors including prostate cancer by suppressing various tumoral growth factors. The influence of GHRH antagonists on animal models of BPH has not been investigated. We evaluated the effects of the GHRH antagonists JMR-132 given at doses of 40 µg/d, MIA-313 at 20 µg/d, and MIA-459 at 20 µg/d in testosterone-induced BPH in Wistar rats. Reduction of prostate weights was observed after 6 wk of treatment with GHRH antagonists: a 17.8% decrease with JMR-132 treatment; a 17.0% decline with MIA-313 treatment; and a 21.4% reduction with MIA-459 treatment (P < 0.05 for all). We quantified transcript levels of genes related to growth factors, inflammatory cytokines, and signal transduction and identified significant changes in the expression of more than 80 genes (P < 0.05). Significant reductions in protein levels of IL-1ß, NF-κß/p65, and cyclooxygenase-2 (COX-2) also were observed after treatment with a GHRH antagonist. We conclude that GHRH antagonists can lower prostate weight in experimental BPH. This reduction is caused by the direct inhibitory effects of GHRH antagonists exerted through prostatic GHRH receptors. This study sheds light on the mechanism of action of GHRH antagonists in BPH and suggests that GHRH antagonists should be considered for further development as therapy for BPH.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Próstata/efeitos dos fármacos , Próstata/patologia , Hiperplasia Prostática/patologia , Sermorelina/análogos & derivados , Processamento Alternativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Humanos , Imuno-Histoquímica , Inflamação/complicações , Inflamação/genética , Mediadores da Inflamação/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-1beta/metabolismo , Masculino , NF-kappa B/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Próstata/metabolismo , Antígeno Prostático Específico/sangue , Hiperplasia Prostática/sangue , Hiperplasia Prostática/enzimologia , Hiperplasia Prostática/genética , Ratos , Receptores Androgênicos/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Sermorelina/administração & dosagem , Sermorelina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcrição Gênica/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 107(51): 22272-7, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21135231

RESUMO

Both deficiency and excess of growth hormone (GH) are associated with increased mortality and morbidity. GH replacement in otherwise healthy subjects leads to complications, whereas individuals with isolated GH deficiency such as Laron dwarfs show increased life span. Here, we determined the effects of treatment with the GH-releasing hormone (GHRH) receptor antagonist MZ-5-156 on aging in SAMP8 mice, a strain that develops with aging cognitive deficits and has a shortened life expectancy. Starting at age 10 mo, mice received daily s.c. injections of 10 µg/mouse of MZ-5-156. Mice treated for 4 mo with MZ-5-156 showed increased telomerase activity, improvement in some measures of oxidative stress in brain, and improved pole balance, but no change in muscle strength. MZ-5-156 improved cognition after 2 mo and 4 mo, but not after 7 mo of treatment (ages 12, 14 mo, and 17 mo, respectively). Mean life expectancy increased by 8 wk with no increase in maximal life span, and tumor incidence decreased from 10 to 1.7%. These results show that treatment with a GHRH antagonist has positive effects on some aspects of aging, including an increase in telomerase activity.


Assuntos
Encéfalo/metabolismo , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Longevidade/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sermorelina/análogos & derivados , Telomerase/metabolismo , Animais , Cognição/efeitos dos fármacos , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Síndrome de Laron/genética , Síndrome de Laron/metabolismo , Camundongos , Sermorelina/farmacologia , Telomerase/genética
10.
Cancer ; 118(3): 670-80, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21751186

RESUMO

BACKGROUND: Antagonists of growth hormone-releasing hormone (GHRH) inhibit the proliferation of various human cancer cell lines and experimental tumors by mechanisms that include direct action on GHRH receptors in cancer cells. METHODS: In this study, the effects of newly synthesized GHRH antagonists, MIA-313, MIA-602, MIA-604, and MIA-610, were investigated in 2 human ovarian epithelial adenocarcinoma cell lines, OVCAR-3 and SKOV-3, in vitro and in vivo. The expression of receptors for GHRH was demonstrated by Western blot analysis and ligand competition methods in the OVCAR-3 and SKOV-3 cell lines and in tumors from those cells grown in athymic nude mice. The effects of GHRH antagonists on the secretion of vascular endothelial growth factor (VEGF) by OVCAR-3 cells and on the vascularization of OVCAR-3 xenografts also were evaluated. RESULTS: Both the pituitary and the splice variant type 1 (SV1) GHRH receptors were detected in the 2 cell lines and in tumor xenografts, and SV1 was expressed at higher levels. Cell viability assays revealed the antiproliferative effect of all GHRH antagonists that were. Maximal tumor growth inhibition was approximately 75% in both models. MIA-313 and MIA-602 decreased VEGF secretion of OVCAR-3 cells, as measured by enzyme-linked immunosorbent assay, and reduced tumor vascularization in a Matrigel plug assay, but caused no change in the expression of VEGF or VEGF receptor in the terminal ileum of mice with OVCAR-3 tumors. CONCLUSIONS: Results from the current study indicated that a he novel approach based on GHRH antagonists may offer more effective therapeutic alternatives for patients with advanced ovarian cancer and who do not tolerate conventional anti-VEGF therapy.


Assuntos
Proliferação de Células/efeitos dos fármacos , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Neovascularização Patológica/prevenção & controle , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/tratamento farmacológico , Sermorelina/análogos & derivados , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/patologia , Sermorelina/farmacologia , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
J Urol ; 187(4): 1498-504, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22341819

RESUMO

PURPOSE: Benign prostatic hyperplasia often affects aging men. Antagonists of the neuropeptide growth hormone-releasing hormone reduced prostate weight in an androgen induced benign prostatic hyperplasia model in rats. Luteinizing hormone-releasing hormone antagonists also produce marked, protracted improvement in lower urinary tract symptoms, reduced prostate volume and an increased urinary peak flow rate in men with benign prostatic hyperplasia. We investigated the influence of a combination of antagonists of growth hormone-releasing hormone and luteinizing hormone-releasing hormone on animal models of benign prostatic hyperplasia. MATERIALS AND METHODS: We evaluated the effects of the growth hormone-releasing hormone antagonist JMR-132, given at a dose of 40 µg daily, the luteinizing hormone-releasing hormone antagonist cetrorelix, given at a dose of 0.625 mg/kg, and their combination on testosterone induced benign prostatic hyperplasia in adult male Wistar rats in vivo. Prostate tissue was examined biochemically and histologically. Serum levels of growth hormone, luteinizing hormone, insulin-like growth factor-1, dihydrotestosterone and prostate specific antigen were determined. RESULTS: Marked shrinkage of the rat prostate (30.3%) occurred in response to the combination of growth hormone-releasing hormone and luteinizing hormone-releasing hormone antagonists (p<0.01). The combination strongly decreased prostatic prostate specific antigen, 6-transmembrane epithelial antigen of the prostate, interleukin-1ß, nuclear factor-κß and cyclooxygenase-2, and decreased serum prostate specific antigen. CONCLUSIONS: A combination of growth hormone-releasing hormone antagonist with luteinizing hormone-releasing hormone antagonist potentiated a reduction in prostate weight in an experimental benign prostatic hyperplasia model. Results suggest that this shrinkage in prostate volume was induced by the direct inhibitory effects of growth hormone-releasing hormone and luteinizing hormone-releasing hormone antagonists exerted through their respective prostatic receptors. These findings suggest that growth hormone-releasing hormone antagonists and/or their combination with luteinizing hormone-releasing hormone antagonists should be considered for further development as therapy for benign prostatic hyperplasia.


Assuntos
Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Hiperplasia Prostática/tratamento farmacológico , Sermorelina/análogos & derivados , Animais , Quimioterapia Combinada , Hormônio Liberador de Gonadotropina/uso terapêutico , Masculino , Tamanho do Órgão/efeitos dos fármacos , Hiperplasia Prostática/patologia , Ratos , Ratos Wistar , Sermorelina/uso terapêutico
12.
Neuroendocrinology ; 96(1): 81-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22377963

RESUMO

Experimental data indicate that antagonists of growth hormone-releasing hormone (GHRH) could be used clinically in disorders characterized by excessive GHRH/growth hormone (GH) secretion, but direct evidence for the effectiveness of GHRH antagonists on human pituitary tissue is still lacking. In this study, we investigated the inhibitory effect of our GHRH antagonists MZ-4-71 and JV-1-36 and the somatostatin (SST) analog RC-160 on superfused pituitary cells obtained from a human GH-secreting adenoma. Using Western blot analysis and immunohistochemistry, we demonstrated profuse expression of the GHRH receptor and its major splice variant SV1 and an increase in the expression of Gsa protein in the adenoma tissue. Exposure of the tumor cells to exogenous pulses of GHRH induced definite GH responses, causing a 3- to 5-fold elevation of the basal GH level. The antagonists MZ-4-71 and JV-1-36 did not alter basal GH secretion, indicating that the adenoma cells did not secrete GHRH in an autocrine manner. However, both antagonists prevented the stimulatory effect of exogenous GHRH. Similarly to the GHRH antagonists, neither SST-14 nor the SST analog RC-160 had an effect on the basal GH secretion of the tumor cells, but both peptides inhibited the stimulatory effect of exogenous GHRH, with RC-160 being more potent than SST. Our study provides direct evidence for the effectiveness of potent GHRH antagonists such as MZ-4-71 and JV-1-36 on human pituitary GH-secreting adenoma tissue and strongly suggests that these drugs could be used for therapy of GHRH-associated forms of acromegaly, particularly for those patients in whom surgery fails or is not an option.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Antagonistas de Hormônios/farmacologia , Neoplasias Hipofisárias/metabolismo , Acromegalia/metabolismo , Adulto , Hormônio Liberador de Hormônio do Crescimento/análogos & derivados , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Humanos , Masculino , Sermorelina/análogos & derivados , Sermorelina/farmacologia
13.
Anticancer Drugs ; 23(9): 906-13, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22926257

RESUMO

Hepatic carcinoma is a major health problem worldwide. Its incidence is increasing in Western countries and there is currently no effective systemic therapy against it. Targeted treatment modalities developed in the past few years have provided very limited success. Development of new treatment strategies is therefore essential. We investigated the effects of bombesin/gastrin-releasing peptide (BN/GRP) antagonist RC-3940-II on experimental human liver cancers in nude mice. SK-Hep-1 and Hep-G2 cancers transplanted subcutaneously into nude mice were treated daily with 10 or 20 µg of RC-3940-II. Tumor growth was monitored for 50-184 days in five experiments. Tumor gene expression was analyzed with PCR array and protein expression by immunoblotting. Characteristics of BN/GRP receptors in the tumors were analyzed by binding assays. Effects of RC-3940-II on cell proliferation were investigated in vitro. RC-3940-II inhibited the growth of SK-Hep-1 cancers in nude mice by 65-98%, with total regression in 9 of 36 tumors in three experiments. The BN/GRP antagonist inhibited the growth of Hep-G2 cancers as well by 73-82% in two experiments, being effective even on originally large tumors. Gene expression analysis showed an increase in several angiogenesis inhibitors and decrease in proangiogenic genes after RC-3940-II treatment. Receptor assays demonstrated high-affinity binding sites for BN/GRP in both tumor lines. BN/GRP antagonist RC-3940-II powerfully inhibits growth of SK-Hep-1 and Hep-G2 cancers in nude mice. Its effect may be linked to changes in expression of those cancer genes important in angiogenesis, invasion, and metastasis. RC-3940-II may be considered for further investigations in treatment of liver cancers.


Assuntos
Antineoplásicos/uso terapêutico , Bombesina/análogos & derivados , Bombesina/antagonistas & inibidores , Peptídeo Liberador de Gastrina/antagonistas & inibidores , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Fragmentos de Peptídeos/uso terapêutico , Carga Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Bombesina/administração & dosagem , Bombesina/uso terapêutico , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Nus , Fragmentos de Peptídeos/administração & dosagem , Resultado do Tratamento , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Peptides ; 150: 170716, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34952135

RESUMO

The syntheses and biological evaluation of GHRH antagonists of AVR series with high anticancer and anti-inflammatory activities are described. Compared to our previously reported GHRH antagonist 602 of MIAMI series, AVR analogs contain additional modifications at positions 0, 6, 8, 10, 11, 12, 20, 21, 29 and 30, which induce greater antitumor activities. Five of nineteen tested AVR analogs presented binding affinities to the membrane GHRH receptors on human pituitary, 2-4-fold better than MIA-602. The antineoplastic properties of these analogs were evaluated in vitro using proliferation assays and in vivo in nude mice xenografted with various human cancer cell lines including lung (NSCLC-ADC HCC827 and NSCLC H460), gastric (NCI-N87), pancreatic (PANC-1 and CFPAC-1), colorectal (HT-29), breast (MX-1), glioblastoma (U87), ovarian (SK-OV-3 and OVCAR-3) and prostatic (PC3) cancers. In vitro AVR analogs showed inhibition of cell viability equal to or greater than MIA-602. After subcutaneous administration at 5 µg/day doses, some AVR antagonists demonstrated better inhibition of tumor growth in nude mice bearing various human cancers, with analog AVR-353 inducing stronger suppression than MIA-602 in lung, gastric, pancreatic and colorectal cancers and AVR-352 in ovarian cancers and glioblastoma. Both antagonists induced greater inhibition of GH release than MIA-602 in vitro in cultured rat pituitary cells and in vivo in rats. AVR-352 also demonstrated stronger anti-inflammatory effects in lung granulomas from mice with lung inflammation. Our studies demonstrate the merit of further investigation of AVR GHRH antagonists and support their potential use for clinical therapy of human cancers and other diseases.


Assuntos
Glioblastoma , Neoplasias Pulmonares , Neoplasias Ovarianas , Animais , Anti-Inflamatórios/farmacologia , Apoptose , Linhagem Celular Tumoral , Feminino , Hormônio do Crescimento , Hormônio Liberador de Hormônio do Crescimento , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Ratos , Sermorelina/metabolismo , Sermorelina/farmacologia
15.
Prostate ; 71(7): 736-47, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20945403

RESUMO

BACKGROUND: Recent findings suggest that BPH has an inflammatory component. Clinical trials have documented that therapy with LHRH antagonist Cetrorelix causes a marked and prolonged improvement in LUTS in men with symptomatic BPH. We investigated the mechanism of action and effect of Cetrorelix in a rat model of BPH. METHODS: Adult male Wistar rats were used. BPH was induced in rats by subcutaneous injections of TE 2 mg/day for 4 weeks. Control animals received injections of corn oil. After induction of BPH, rats received depot Cetrorelix pamoate at the doses of 0.625, 1.25, and 12.5 mg/kg on days 1 and 22 and TE-control rats received vehicle injections. Whole prostates were weighed and processed for RNA and protein. Real-time RT-PCR assays for numerous inflammatory cytokines and growth factors were performed. Quantitative analyses of prostatic LHRH receptor, LHRH, androgen receptor (AR) and 5α-reductase 2 were done by real-time RT-PCR and immunoblotting; serum DHT, LH, PSA, and IGF-1 by immunoassays. RESULTS: mRNA levels for inflammatory cytokines IFN-γ, IL-3, IL-4, IL-5, IL-6, IL-8, IL-13, IL-15, and IL-17 and for growth factors EGF, FGF-2, FGF-7, FGF-8, FGF-14, TGF-ß1, and VEGF-A were significantly reduced by Cetrorelix 0.625 mg/kg (P < 0.05). Prostate weights were also significantly lowered by any dose of Cetrorelix. CONCLUSIONS: This study suggests that Cetrorelix reduces various inflammatory cytokines and growth factors in rat prostate and, at doses which do not induce castration levels of testosterone, can lower prostate weights. Our findings shed light on the mechanism of action of LHRH antagonists in BPH.


Assuntos
Citocinas/genética , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/farmacologia , Próstata/efeitos dos fármacos , Hiperplasia Prostática/tratamento farmacológico , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/farmacologia , Masculino , Próstata/metabolismo , Próstata/patologia , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/patologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores LHRH/efeitos dos fármacos , Receptores LHRH/genética , Receptores LHRH/metabolismo , Testosterona/toxicidade
16.
Int J Cancer ; 127(10): 2313-22, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20162575

RESUMO

The effects of new growth hormone-releasing hormone (GHRH) antagonists JMR-132 and MIA-602 and their mechanism of action were investigated on 2 human glioblastoma cell lines, DBTRG-05 and U-87MG, in vitro and in vivo. GHRH receptors and their main splice variant, SV1 were found on both cell lines. After treatment with JMR-132 or MIA-602, the cell viability decreased significantly. A major decrease in the levels of phospho-Akt, phospho-GSK3ß and phosho-ERK 1/2 was detected at 5 and 10 min following treatment with the GHRH antagonists, whereas elevated levels of phospho-p38 were observed at 24 hr. The expression of caspase-3 and poly(ADP-ribose) (PARP), as the downstream executioners of apoptosis were found to be significantly elevated after treatment. Following treatment of the glioblastoma cells with GHRH antagonists, nuclear translocation of apoptosis inducing factor (AIF) and Endonuclease G (Endo G) and the mitochondrial release of cytochrome c (cyt c) were detected, indicating that the cells were undergoing apoptosis. In cells treated with GHRH antagonists, the collapse of the mitochondrial membrane potential was shown with fluorescence microscopy and JC-1 membrane potential sensitive dye. There were no significant differences between results obtained in DBTRG-05 or U-87MG cell lines. After treatment with MIA-602 and JMR-132, the reduction rate in the growth of DBTRG-05 glioblastoma, xenografted into nude mice, was significant and tumor doubling time was also significantly extended when compared with controls. Our study demonstrates that GHRH antagonists induce apoptosis through key proapoptotic pathways and shows the efficacy of MIA-602 for experimental treatment of glioblastoma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Sermorelina/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , Células NIH 3T3 , Isoformas de Proteínas , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Sermorelina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Oncotarget ; 8(40): 66796-66814, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28977997

RESUMO

Extrapituitary roles for hypothalamic neurohormones have recently become apparent and clinically relevant, based on the use of synthetic peptide analogs for the treatment of multiple conditions including cancers, pulmonary edema and myocardial infarction. In the eye, it has been suggested that some of these hormones and their receptors may be present in the ciliary body, iris, trabecular meshwork and retina, but their physiological role has yet to be elucidated. Our study intends to comprehensively demonstrate the expression of some hypothalamic neuroendocrine hormones and their receptors within different retinal and extraretinal structures of the human eye. Immunofluorescence, Western blot analysis, and RT-PCR were used to evaluate the qualitative and quantitative expression of Luteinizing Hormone Releasing Hormone (LHRH), Growth Hormone Releasing Hormone (GHRH), Thyrotropin Releasing Hormone (TRH), Gastrin Releasing Peptide (GRP) and Somatostatin as well as their respective receptors (LHRH-R, GHRH-R, TRH-R, GRP-R, SST-R1) in cadaveric human eye tissue and in paraffinized human eye tissue sections. The hypothalamic hormones LHRH, GHRH, TRH, GRP and Somatostatin and their respective receptors (LHRH-R, GHRH-R, TRH-R, GRPR/BB2 and SST-R1), were expressed in the conjunctiva, cornea, trabecular meshwork, ciliary body, lens, retina, and optic nerve.

18.
Oncotarget ; 6(12): 9728-39, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25797248

RESUMO

BACKGROUND: We previously showed that growth hormone-releasing hormone (GHRH) agonists are cardioprotective following myocardial infarction (MI). Here, our aim was to evaluate the in vitro and in vivo activities of highly potent new GHRH agonists, and elucidate their mechanisms of action in promoting cardiac repair. METHODS AND RESULTS: H9c2 cells were cultured in serum-free medium, mimicking nutritional deprivation. GHRH agonists decreased calcium influx and significantly improved cell survival. Rats with cardiac infarction were treated with GHRH agonists or placebo for four weeks. MI size was reduced by selected GHRH agonists (JI-38, MR-356, MR-409); this accompanied an increased number of cardiac c-kit+ cells, cellular mitotic divisions, and vascular density. One week post-MI, MR-409 significantly reduced plasma levels of IL-2, IL-6, IL-10 and TNF-α compared to placebo. Gene expression studies revealed favorable outcomes of MR-409 treatment partially result from inhibitory activity on pro-apoptotic molecules and pro-fibrotic systems, and by elevation of bone morphogenetic proteins. CONCLUSIONS: Treatment with GHRH agonists appears to reduce the inflammatory responses post-MI and may consequently improve mechanisms of healing and cardiac remodeling by regulating pathways involved in fibrosis, apoptosis and cardiac repair. Patients with cardiac dysfunction could benefit from treatment with novel GHRH agonists.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Receptores de Neuropeptídeos/agonistas , Receptores de Neuropeptídeos/química , Receptores de Hormônios Reguladores de Hormônio Hipofisário/agonistas , Receptores de Hormônios Reguladores de Hormônio Hipofisário/química , Alprostadil/análogos & derivados , Alprostadil/química , Animais , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hormônio Liberador de Hormônio do Crescimento/análogos & derivados , Hormônio Liberador de Hormônio do Crescimento/química , Humanos , Inflamação , Interleucina-10/sangue , Interleucina-2/sangue , Interleucina-6/sangue , Microscopia de Fluorescência , Mitose , Ratos , Sermorelina/análogos & derivados , Sermorelina/química , Fator de Necrose Tumoral alfa/sangue
19.
Cell Cycle ; 13(17): 2790-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25486366

RESUMO

Malignant melanoma is the deadliest form of skin cancer; the treatment of advanced and recurrent forms remains a challenge. It has recently been reported that growth hormone-releasing hormone (GHRH) receptor is involved in the pathogenesis of melanoma. Therefore, we investigated the effects of our new GHRH antagonists on a human melanoma cancer cell line. Antiproliferative effects of GHRH antagonists, MIA-602, MIA-606 and MIA-690, on the human melanoma cell line, A-375, were studied in vitro using the MTS assay. The effect of MIA-690 (5 µg/day 28 d) was further evaluated in vivo in nude mice bearing xenografts of A-375. Subcellular localization of p27 was detected with Western blot and immunofluorescent staining. MIA-690 inhibited the proliferation of A-375 cells in a dose-dependent manner (33% at 10 µM, and 19.2% at 5 µM, P < 0 .05 vs. control), and suppressed the growth of xenografted tumors by 70.45% (P < 0.05). Flow cytometric analysis of cell cycle effects following the administration of MIA-690 revealed a decrease in the number of cells in G2/M phase (from 19.7% to 12.9%, P < 0.001). Additionally, Western blot and immunofluorescent studies showed that exposure of A-375 cells to MIA-690 triggered the nuclear accumulation of p27. MIA-690 inhibited tumor growth in vitro and in vivo, and increased the translocation of p27 into the nucleus thus inhibiting progression of the cell cycle. Our findings indicate that patients with malignant melanoma could benefit from treatment regimens, which combine existing chemotherapy agents and novel GHRH-antagonists.


Assuntos
Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Melanoma/patologia , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Humanos , Melanoma/genética , Camundongos Nus , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Sermorelina/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias Cutâneas , Ensaios Antitumorais Modelo de Xenoenxerto , Melanoma Maligno Cutâneo
20.
Target Oncol ; 8(4): 281-90, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23371031

RESUMO

Five-year survival of patients afflicted with glioblastoma multiforme (GBM) is rare, making this cancer one of the most feared malignancies. Previously, we reported that growth hormone-releasing hormone (GHRH) is a potent growth factor in cancers. The present work evaluated the effects of two antagonistic analogs of GHRH (MIA-604 and MIA-690) on the proliferation of U-87 MG GBM tumors, in vivo as well as in vitro. Both analogs were administered subcutaneously and dose-dependently inhibited the growth of tumors transplanted into nude mice (127 animals in seven groups). The analogs also inhibited cell proliferation in vitro, decreased cell size, and promoted apoptotic and autophagic processes. Both antagonists stimulated contact inhibition, as indicated by the expression of the E-cadherin-ß-catenin complex and integrins, and decreased the release of humoral regulators of glial growth such as FGF, PDGFß, and TGFß, as revealed by genomic or proteomic detection methods. The GHRH analogs downregulated other tumor markers (Jun-proto-oncogene, mitogen-activated protein kinase-1, and melanoma cell adhesion molecule), upregulated tumor suppressors (p53, metastasis suppressor-1, nexin, TNF receptor 1A, BCL-2-associated agonist of cell death, and ifκBα), and inhibited the expression of the regulators of angiogenesis and invasion (angiopoetin-1, VEGF, matrix metallopeptidase-1, S100 calcium binding protein A4, and synuclein-γ). Our findings indicate that GHRH antagonists inhibit growth of GBMs by multiple mechanisms and decrease both tumor cell size and number.


Assuntos
Glioblastoma/tratamento farmacológico , Hormônio Liberador de Hormônio do Crescimento/análogos & derivados , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Humanos , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Proto-Oncogene Mas , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa