Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plant Mol Biol ; 104(4-5): 339-357, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32638297

RESUMO

Key Message A resistant E. grandis genotype showed a constitutive overexpression of genes related to resistance to myrtle rust caused by A. psidii. Abstract Myrtle rust caused by Austropuccinia psidii is considered one of the most important fungal diseases affecting Eucalyptus spp. plantations in Brazil. Although the selection and planting of resistant eucalypt genotypes have been the major strategies to manage the disease in Brazil, the molecular mechanisms involved in resistance are still unclear. In this study, we evaluated the gene expression profile of two contrasting Eucalyptus grandis genotypes in resistance level to rust by RNA-Seq. The two genotypes showed a very different background gene expression level even without A. psidii infection. The resistant genotype had a constitutive overexpression of a large number of protein-coding genes compared to the susceptible genotype. These genes were mainly associated with signal transduction, photosynthesis, regulation and response to salicylic acid (SA), and protein kinase leucine-rich receptors (PK-LRR). PK-LRR and SA mediated disease resistance are well known to be effective against obligate biotroph pathogens, such as A. psidii. In addition, at 24 h after infection, the susceptible genotype was able to activate some response, however, several resistance-related proteins had their expression level reduced with A. psidii infection. Here, we present the first analysis of E. grandis genotypes transcriptomes infected by A. psidii and it reveals a constitutive overexpression of several resistance-related genes in the resistant genotype compared to the susceptible one. Our findings have the potential to be used as candidate molecular markers for resistance to myrtle rust.


Assuntos
Basidiomycota/patogenicidade , Eucalyptus/genética , Eucalyptus/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Brasil , Resistência à Doença/genética , Eucalyptus/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Família Multigênica , Fotossíntese/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Ácido Salicílico/metabolismo
2.
Fungal Genet Biol ; 137: 103332, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31926322

RESUMO

Ceratocystis fimbriata is an important plant pathogen known to cause Ceratocystis Wilt (CW), a prevalent fungal disease known to affect Eucalyptus spp. plantations in Brazil. To better understand the molecular mechanisms related to pathogenicity in eucalyptus, we generated a high-quality assembly and annotation of the Ce. fimbriata LPF1912 isolate (LPF1912) genome, as well as the first transcriptome of LPF1912 from 16 eucalyptus clones at three infection incubation periods (12, 18, and 24 h). The LPF1912 genome assembly contains 805 scaffolds, totaling 31.8 Mb, with 43% of the genome estimated to be coding sequence comprised of 7,390 protein-coding genes of which 626 (8.5%) were classified as secreted proteins, 120 ribosomal RNAs, and 532 transfer RNAs. Comparative genomic analysis among three eucalyptus fungal pathogens (Ce. fimbriata, Ce. eucalypticola, and Calonectria pseudoreteaudii), showed high similarity in the proteome (21.81%) and secretome (52.01%) of LPF1912 and Ce. eucalypticola. GO annotation of pathogenicity-related genes of LPF1912 and Ce. eucalypticola, revealed enrichment in cell wall degrading enzymes (CWDEs), and lipid/cutin metabolism for Ca. pseudoreteaudii. Additionally, a transcriptome analysis between resistant and susceptible eucalyptus clones to CW infection indicated that a majority (11) of LPF1912 differentially expressed genes had GO terms associated with enzymatic functions, such as the polygalacturonase gene family, confirming the crucial role of CWDEs for Ce. fimbriata pathogenicity. Finally, our genomic and transcriptomic analysis approach provides a better understanding of the mechanisms involved in Ce. fimbriata pathogenesis, as well as a framework for further studies.


Assuntos
Ceratocystis/genética , Hypocreales/genética , Ascomicetos/genética , Ceratocystis/metabolismo , Eucalyptus/microbiologia , Perfilação da Expressão Gênica/métodos , Variação Genética/genética , Genômica/métodos , Filogenia , Doenças das Plantas/microbiologia , Proteoma/genética , Transcriptoma/genética , Virulência/genética
3.
Appl Microbiol Biotechnol ; 103(5): 2295-2309, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30685810

RESUMO

The fungus Colletotrichum lindemuthianum is the causal agent of anthracnose in the common bean (Phaseolus vulgaris), and anthracnose is one of the most devastating diseases of this plant species. However, little is known about the proteins that are essential for the fungus-plant interactions. Knowledge of the fungus' arsenal of effector proteins is of great importance for understanding this pathosystem. In this work, we analyzed for the first time the arsenal of Colletotrichum lindemuthianum effector candidates (ClECs) and compared them with effector proteins from other species of the genus Colletotrichum, providing a valuable resource for studying the infection mechanisms of these pathogens in their hosts. Isolates of two physiological races (83.501 and 89 A2 2-3) of C. lindemuthianum were used to predict 353 and 349 ClECs, respectively. Of these ClECs, 63% were found to be rich in cysteine, have repetitive sequences of amino acids, and/or possess nuclear localization sequences. Several conserved domains were found between the ClECs. We also applied the effector prediction to nine species in the genus Colletotrichum, and the results ranged from 247 predicted effectors in Colletotrichum graminicola to 446 in Colletotrichum orbiculare. Twelve conserved domains were predicted in the effector candidates of all analyzed species of Colletotrichum. An expression analysis of the eight genes encoding the effector candidates in C. lindemuthianum revealed their induction during the biotrophic phase of the fungus on the bean.


Assuntos
Colletotrichum/genética , Colletotrichum/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Phaseolus/microbiologia , Doenças das Plantas/microbiologia , Sequência de Aminoácidos/genética , Sequência de Bases , Colletotrichum/isolamento & purificação , Expressão Gênica/genética , Perfilação da Expressão Gênica , Domínios Proteicos/genética , Análise de Sequência de DNA
4.
Appl Microbiol Biotechnol ; 102(6): 2763-2778, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29453633

RESUMO

Fungi of the genus Colletotrichum are economically important and are used as models in plant-pathogen interaction studies. In this study, the complete mitochondrial genomes of two Colletotrichum lindemuthianum isolates were sequenced and compared with the mitochondrial genomes of seven species of Colletotrichum. The mitochondrial genome of C. lindemuthianum is a typical circular molecule 37,446 bp (isolate 89 A2 2-3) and 37,440 bp (isolate 83.501) in length. The difference of six nucleotides between the two genomes is the result of a deletion in the ribosomal protein S3 (rps3) gene in the 83.501 isolate. In addition, substitution of adenine for guanine within the rps3 gene in the mitochondrial genome of the 83.501 isolate was observed. Compared to the previously sequenced C. lindemuthianum mitochondrial genome, an exon no annotated in the cytochrome c oxidase I (cox1) gene and a non-conserved open reading frame (ncORF) were observed. The size of the mitochondrial genomes of the seven species of Colletotrichum was highly variable, being attributed mainly to the ncORF, ranging from one to 10 and also from introns ranging from one to 11 and which encode a total of up to nine homing endonucleases. This paper reports for the first time by means of transcriptome that then ncORFs are transcribed in Colletotrichum spp. Phylogeny data revealed that core mitochondrial genes could be used as an alternative in phylogenetic relationship studies in Colletotrichum spp. This work contributes to the genetic and biological knowledge of Colletotrichum spp., which is of great economic and scientific importance.


Assuntos
Colletotrichum/genética , Genoma Mitocondrial , Colletotrichum/isolamento & purificação , DNA Circular/química , DNA Circular/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Éxons , Genes Mitocondriais , Tamanho do Genoma , Fases de Leitura Aberta , Phaseolus/microbiologia , Doenças das Plantas/microbiologia , Mutação Puntual , Análise de Sequência de DNA , Deleção de Sequência
5.
BMC Bioinformatics ; 18(1): 240, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28476106

RESUMO

BACKGROUND: The Geminiviridae family encompasses a group of single-stranded DNA viruses with twinned and quasi-isometric virions, which infect a wide range of dicotyledonous and monocotyledonous plants and are responsible for significant economic losses worldwide. Geminiviruses are divided into nine genera, according to their insect vector, host range, genome organization, and phylogeny reconstruction. Using rolling-circle amplification approaches along with high-throughput sequencing technologies, thousands of full-length geminivirus and satellite genome sequences were amplified and have become available in public databases. As a consequence, many important challenges have emerged, namely, how to classify, store, and analyze massive datasets as well as how to extract information or new knowledge. Data mining approaches, mainly supported by machine learning (ML) techniques, are a natural means for high-throughput data analysis in the context of genomics, transcriptomics, proteomics, and metabolomics. RESULTS: Here, we describe the development of a data warehouse enriched with ML approaches, designated geminivirus.org. We implemented search modules, bioinformatics tools, and ML methods to retrieve high precision information, demarcate species, and create classifiers for genera and open reading frames (ORFs) of geminivirus genomes. CONCLUSIONS: The use of data mining techniques such as ETL (Extract, Transform, Load) to feed our database, as well as algorithms based on machine learning for knowledge extraction, allowed us to obtain a database with quality data and suitable tools for bioinformatics analysis. The Geminivirus Data Warehouse (geminivirus.org) offers a simple and user-friendly environment for information retrieval and knowledge discovery related to geminiviruses.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Geminiviridae/genética , Aprendizado de Máquina , Algoritmos , DNA de Cadeia Simples/genética , DNA Viral/genética , Fases de Leitura Aberta/genética , Filogenia , Plantas/virologia
6.
Biochim Biophys Acta ; 1843(12): 2944-56, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25205453

RESUMO

Ki-1/57 (HABP4) and CGI-55 (SERBP1) are regulatory proteins and paralogs with 40.7% amino acid sequence identity and 67.4% similarity. Functionally, they have been implicated in the regulation of gene expression on both the transcriptional and mRNA metabolism levels. A link with tumorigenesis is suggested, since both paralogs show altered expression levels in tumor cells and the Ki-1/57 gene is found in a region of chromosome 9q that represents a haplotype for familiar colon cancer. However, the target genes regulated by Ki-1/57 and CGI-55 are unknown. Here, we analyzed the alterations of the global transcriptome profile after Ki-1/57 or CGI-55 overexpression in HEK293T cells by DNA microchip technology. We were able to identify 363 or 190 down-regulated and 50 or 27 up-regulated genes for Ki-1/57 and CGI-55, respectively, of which 20 were shared between both proteins. Expression levels of selected genes were confirmed by qRT-PCR both after protein overexpression and siRNA knockdown. The majority of the genes with altered expression were associated to proliferation, apoptosis and cell cycle control processes, prompting us to further explore these contexts experimentally. We observed that overexpression of Ki-1/57 or CGI-55 results in reduced cell proliferation, mainly due to a G1 phase arrest, whereas siRNA knockdown of CGI-55 caused an increase in proliferation. In the case of Ki-1/57 overexpression, we found protection from apoptosis after treatment with the ER-stress inducer thapsigargin. Together, our data give important new insights that may help to explain these proteins putative involvement in tumorigenic events.

7.
Funct Integr Genomics ; 15(6): 685-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26013145

RESUMO

Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is one of most important diseases in the soybean (Glycine max (L.) Merr.) agribusiness. The identification and characterization of genes related to plant defense responses to fungal infection are essential to develop ASR-resistant plants. In this work, we describe four soybean genes, GmbZIP62, GmbZIP105, GmbZIPE1, and GmbZIPE2, which encode transcription factors containing a basic leucine zipper (bZIP) domain from two divergent classes, and that are responsive to P. pachyrhizi infection. Molecular phylogenetic analyses demonstrated that these genes encode proteins similar to bZIP factors responsive to pathogens. Yeast transactivation assays showed that only GmbZIP62 has strong transactivation activity in yeast. In addition, three of the bZIP transcription factors analyzed were also differentially expressed by plant defense hormones, and all were differentially expressed by fungal attack, indicating that these proteins might participate in response to ASR infection. The results suggested that these bZIP proteins are part of the plant defense response to P. pachyrhizi infection, by regulating the gene expression related to ASR infection responses. These bZIP genes are potential targets to obtain new soybean genotypes resistant to ASR.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/microbiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Phakopsora pachyrhizi/patogenicidade , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Dedos de Zinco
8.
BMC Genomics ; 15: 7, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24384011

RESUMO

BACKGROUND: Phages infecting spoilage microorganisms have been considered as alternative biocontrol agents, and the study of their genomes is essential to their safe use in foods. UFV-P2 is a new Pseudomonas fluorescens-specific phage that has been tested for its ability to inhibit milk proteolysis. RESULTS: The genome of the phage UFV-P2 is composed of bidirectional modules and presented 75 functionally predict ORFs, forming clusters of early and late transcription. Further genomic comparisons of Pseudomonas-specific phages showed that these viruses could be classified according to conserved segments that appear be free from genome rearrangements, called locally collinear blocks (LCBs). In addition, the genome organization of the phage UFV-P2 was shown to be similar to that of phages PaP3 and LUZ24 which have recently been classified as a Luz24likevirus. CONCLUSIONS: We have presented the functional annotation of UFV-P2, a new Pseudomonas fluorescens phage. Based on structural genomic comparison and phylogenetic clustering, we suggest the classification of UFV-P2 in the Luz24likevirus genus, and present a set of shared locally collinear blocks as the genomic signature for this genus.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/genética , Genoma Viral , Bacteriófago P2/genética , Análise por Conglomerados , Biologia Computacional , Fases de Leitura Aberta , Filogenia , Pseudomonas fluorescens/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Microbiol Resour Announc ; 11(9): e0028422, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35972249

RESUMO

Here, we report the draft genome sequence of Calonectria pteridis, the causal agent of Calonectria leaf blight in eucalyptus plantations in Brazil. The 58,373,473-bp genome assembly consists of 1,167 scaffolds, with a GC content of 50.21%. These genomic data can contribute to future studies involving the biology, adaptability, and pathogenicity of C. pteridis.

10.
Microbiol Resour Announc ; 8(16)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000543

RESUMO

Here, we report the annotated draft genome sequence of Xanthomonas axonopodis pv. eucalyptorum pathotype strain LPF602 (synonym Xanthomonas axonopodis BSC45a), isolated from eucalypt leaves showing bacterial blight symptoms in Brazil. The availability of these genomic data will help improve the understanding of the evolution and molecular mechanisms involved in the pathogenesis of this microorganism.

11.
Artigo em Inglês | MEDLINE | ID: mdl-30714036

RESUMO

Here, we present a draft genome sequence of the type strain IBSBF 435 of Erwinia psidii (Enterobacteriaceae), a phytopathogen that causes bacterial blight on guava (Psidium guava) and dieback and wilt on eucalypt (Eucalyptus spp.), both of which are important emerging diseases.

12.
Genome Announc ; 6(10)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29519819

RESUMO

Streptococcus thermophilus, a very important dairy species, is constantly threatened by phage infection. We report the genome sequences of three S. thermophilus bacteriophages isolated from a dairy environment in the Veneto region of Italy. These sequences will be used for the development of new strategies to detect and control phages in dairy environments.

13.
Vet Microbiol ; 218: 45-51, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29685220

RESUMO

Trueperella pyogenes is an opportunistic pathogen of many animal species. It causes economic losses worldwide, through mastitis, metritis and mainly endometritis in dairy cows. The ability of this bacterium to form biofilms is implicated in chronic infections through hampering immune system recognition and antibiotic penetration. Since it is difficult to eradicate T. pyogenes infections with antibiotics, phage therapy presents itself as a non-toxic, effective and economically viable alternative. The present study evaluated the use of the bacteriophage vB_EcoM-UFV13 (UFV13) in the prevention of T. pyogenes biofilm development. Based upon two different approaches (crystal violet and sessile cell counting) we observed that only a multiplicity of infection (MOI) of 10 showed a statistically significant reduction in biofilm formation. Although the exact mechanisms of biofilm disruption and cell-adhesion inhibition have not been determined, genome sequence analysis of the Escherichia phage UFV13 revealed a repertoire of virion-associated peptidoglycan hydrolases (VAPGHs). The present study presents new findings regarding the disruption of biofilm formation of a Gram-positive bacterium. Subsequent transcriptomic and proteomic research will help us to understand the exact interaction mechanisms between UFV13 and T. pyogenes.


Assuntos
Actinomycetaceae/virologia , Infecções por Actinomycetales/veterinária , Bacteriófago T4/genética , Biofilmes/crescimento & desenvolvimento , Mastite/veterinária , Actinomycetaceae/genética , Actinomycetaceae/isolamento & purificação , Infecções por Actinomycetales/microbiologia , Animais , Bacteriófago T4/isolamento & purificação , Bacteriófago T4/metabolismo , Bacteriófago T4/ultraestrutura , Bovinos , Doenças dos Bovinos/microbiologia , Escherichia coli/isolamento & purificação , Escherichia coli/virologia , Feminino , Mastite/microbiologia , Microscopia Eletrônica , Proteômica , Fatores de Virulência
14.
Vet Sci ; 5(2)2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29584648

RESUMO

The molecular biology era, together with morphology, molecular phylogenetics, bioinformatics, and high-throughput sequencing technologies, improved the taxonomic identification of Argasidae family members, especially when considering specimens at different development stages, which remains a great difficulty for acarologists. These tools could provide important data and insights on the history and evolutionary relationships of argasids. To better understand these relationships, we sequenced and assembled the first complete mitochondrial genome of Nothoaspis amazoniensis. We used phylogenomics to identify the evolutionary history of this species of tick, comparing the data obtained with 26 complete mitochondrial sequences available in biological databases. The results demonstrated the absence of genetic rearrangements, high similarity and identity, and a close organizational link between the mitogenomes of N. amazoniensis and other argasids analyzed. In addition, the mitogenome had a monophyletic cladistic taxonomic arrangement, encompassed by representatives of the Afrotropical and Neotropical regions, with specific parasitism in bats, which may be indicative of an evolutionary process of cospeciation between vectors and the host.

15.
Sci Rep ; 8(1): 6845, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717158

RESUMO

Bovine mastitis remains the main cause of economic losses for dairy farmers. Mammary pathogenic Escherichia coli (MPEC) is related to an acute mastitis and its treatment is still based on the use of antibiotics. In the era of antimicrobial resistance (AMR), bacterial viruses (bacteriophages) present as an efficient treatment or prophylactic option. However, this makes it essential that its genetic structure, stability and interaction with the host immune system be thoroughly characterized. The present study analyzed a novel, broad host-range anti-mastitis agent, the T4virus vB_EcoM-UFV13 in genomic terms, and its activity against a MPEC strain in an experimental E. coli-induced mastitis mouse model. 4,975 Single Nucleotide Polymorphisms (SNPs) were assigned between vB_EcoM-UFV13 and E. coli phage T4 genomes with high impact on coding sequences (CDS) (37.60%) for virion proteins. Phylogenetic trees and genome analysis supported a recent infection mix between vB_EcoM-UFV13 and Shigella phage Shfl2. After a viral stability evaluation (e.g pH and temperature), intramammary administration (MOI 10) resulted in a 10-fold reduction in bacterial load. Furthermore, pro-inflammatory cytokines, such as IL-6 and TNF-α, were observed after viral treatment. This work brings the whole characterization and immune response to vB_EcoM-UFV13, a biocontrol candidate for bovine mastitis.


Assuntos
Bacteriófago T4/genética , Escherichia coli/genética , Escherichia coli/virologia , Mastite Bovina/microbiologia , Mastite Bovina/terapia , Animais , Bovinos , Modelos Animais de Doenças , Feminino , Genoma Viral , Interleucina-6/imunologia , Mastite Bovina/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Fator de Necrose Tumoral alfa/imunologia
16.
Genome Announc ; 5(18)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28473373

RESUMO

Colletotrichum lindemuthianum is the causal agent of anthracnose in common beans, one of the main limiting factors of their culture. Here, we report for the first time, to our knowledge, a draft of the complete genome sequences of two isolates belonging to 83.501 and 89 A2 2-3 of C. lindemutuianum.

17.
Genome Announc ; 4(6)2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27932642

RESUMO

vB_EcoM-UFV13, a member of the T4virus genus, shows lytic activity against Escherichia coli and effectiveness in controlling the biofilm formed by Trueperella pyogenes, which qualifies it as a promising component of phage cocktails for mastitis and metritis control.

18.
Genome Announc ; 4(1)2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26893417

RESUMO

Here, we present the draft genome sequences of four Staphylococcus aureus strains isolated from mastitic milk collected from animals with subclinical manifestations. Three of them were typed as sequence type 126 (ST126), a genotype with no genome sequence available. ST126 is found in several herds of southern Brazil and is described as a bovine pathogen strongly associated with milk around the world.

19.
Genome Announc ; 2(2)2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24652974

RESUMO

Three porcine circovirus-2 strains were isolated from pigs on a Brazilian farm during an outbreak, indicating a vaccine failure. They present identical genomic sequences, with high identities to other isolates that were also related to vaccination failures, supporting the recent theory about an antigen drift being associated with vaccine failures throughout the world.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa