Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 49(24): 14334-42, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26523324

RESUMO

Self-sustaining treatment for active remediation (STAR) is an emerging, smoldering-based technology for nonaqueous-phase liquid (NAPL) remediation. This work presents the first in situ field evaluation of STAR. Pilot field tests were performed at 3.0 m (shallow test) and 7.9 m (deep test) below ground surface within distinct lithological units contaminated with coal tar at a former industrial facility. Self-sustained smoldering (i.e., after the in-well ignition heater was terminated) was demonstrated below the water table for the first time. The outward propagation of a NAPL smoldering front was mapped, and the NAPL destruction rate was quantified in real time. A total of 3700 kg of coal tar over 12 days in the shallow test and 860 kg over 11 days in the deep test was destroyed; less than 2% of total mass removed was volatilized. Self-sustaining propagation was relatively uniform radially outward in the deep test, achieving a radius of influence of 3.7 m; strong permeability contrasts and installed barriers influenced the front propagation geometry in the shallow test. Reductions in soil hydrocarbon concentrations of 99.3% and 97.3% were achieved in the shallow and deep tests, respectively. Overall, this provides the first field evaluation of STAR and demonstrates that it is effective in situ and under a variety of conditions and provides the information necessary for designing the full-scale site treatment.


Assuntos
Alcatrão/química , Poluição Ambiental/análise , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/análise , Carvão Mineral , Hidrocarbonetos/isolamento & purificação , Peso Molecular , Petróleo/análise , Projetos Piloto , Solo , Temperatura , Volatilização
2.
Environ Sci Technol ; 43(7): 2302-7, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19452878

RESUMO

Anaerobic microcosms were constructed using sediments from a historically chlorobenzene-contaminated site and were provided with yeast extract as an electron donor. In these methanogenic microcosms, all three isomers of dichlorobenzene (DCB) were reductively dehalogenated to monochlorobenzene (MCB) when added together or individually, with 1,2-DCB dehalogenation being the most rapid and 1,4-DCB the slowest. When nearly all of the DCBs were consumed, benzene was detected and its accumulation was concomitant with MCB disappearance. Small amounts of toluene were also detected along with benzene. Subsequent MCB doses were also converted to benzene, and benzene reached levels in excess of 5000 micromol/L in some microcosms. An initial DCB dose stimulated, and in some cases was necessary for, MCB dehalogenation. Subsequent doses of DCB or MCB were dehalogenated more rapidly than previous ones, consistent with a growth-related process. Addition of a ca. 4% inoculum from microcosms that had consumed DCBs or MCB stimulated DCB and MCB dehalogenation in fresh microcosms, also indicative of growth and suggests thatthe chlorobenzene-dehalogenating microorganisms in these microcosms are candidates for bioaugmentation at anaerobic DCB or MCB contaminated sites. These studies add to evidence that benzene production from chlorobenzenes needs to be considered when modeling processes at contaminated sites.


Assuntos
Derivados de Benzeno/química , Ecossistema , Halogênios/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa