Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 413(10): 2779-2791, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33770207

RESUMO

Mass spectrometry imaging (MSI) provides insight into the molecular distribution of a broad range of compounds and, therefore, is frequently applied in the pharmaceutical industry. Pharmacokinetic and toxicological studies deploy MSI to localize potential drugs and their metabolites in biological tissues but currently require other analytical tools to quantify these pharmaceutical compounds in the same tissues. Quantitative mass spectrometry imaging (Q-MSI) is a field with challenges due to the high biological variability in samples combined with the limited sample cleanup and separation strategies available prior to MSI. In consequence, more selectivity in MSI instruments is required. This can be provided by multiple reaction monitoring (MRM) which uses specific precursor ion-product ion transitions. This targeted approach is in particular suitable for pharmaceutical compounds because their molecular identity is known prior to analysis. In this work, we compared different analytical platforms to assess the performance of MRM detection compared to other MS instruments/MS modes used in a Q-MSI workflow for two drug candidates (A and B). Limit of detection (LOD), linearity, and precision and accuracy of high and low quality control (QC) samples were compared between MS instruments/modes. MRM mode on a triple quadrupole mass spectrometer (QqQ) provided the best overall performance with the following results for compounds A and B: LOD 35.5 and 2.5 µg/g tissue, R2 0.97 and 0.98 linearity, relative standard deviation QC <13.6%, and 97-112% accuracy. Other MS modes resulted in LOD 6.7-569.4 and 2.6-119.1 µg/g tissue, R2 0.86-0.98 and 0.86-0.98 linearity, relative standard deviation QC < 19.4 and < 37.5%, and 70-356% and 64-398% accuracy for drug candidates A and B, respectively. In addition, we propose an optimized 3D printed mimetic tissue model to increase the overall analytical throughput of our approach for large animal studies. The MRM imaging platform was applied as proof-of-principle for quantitative detection of drug candidates A and B in four dog livers and compared to LC-MS. The Q-MSI concentrations differed <3.5 times with the concentrations observed by LC-MS. Our presented MRM-based Q-MSI approach provides a more selective and high-throughput analytical platform due to MRM specificity combined with an optimized 3D printed mimetic tissue model.


Assuntos
Fígado/química , Espectrometria de Massas/métodos , Preparações Farmacêuticas/análise , Animais , Cães , Limite de Detecção , Fígado/metabolismo , Espectrometria de Massas/instrumentação , Preparações Farmacêuticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa